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Synthetic analysis of periodically stimulated excitable and oscillatory membrane models
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Many excitable neuronal membranes become oscillatory when stimulated by large enough dc currents. In
this paper we investigate how the transition from excitable to oscillatory regimes affects the response of the
membrane to periodic pulse trains. To this end, we examine how the dynamics of periodically stimulated
FitzHugh-Nagumo neuron model changes as the system switches from excitability to oscillation. We show
that, despite the important change in the asymptotic dynamics of the unperturbed modehase-locking
(i.e., the model membrane discharggimes inp interstimulus intervals and input-output intervals repeat
periodically regions in the stimulus period-stimulus amplitude parameter p{émeold tongueg change
continuously when the model changes from excitable to oscillatory. We provide further evidence for the
continuous change of the Arnold tongues by using an analytically tractable one-dimensional map that approxi-
mates the Poincammap of the forced system. We argue that the smooth change in the Arnold tongues results
from the fact that, despite the qualitative difference between the asymptotic dynamics of unforced excitable
and oscillatory regimes, other aspects of the dynamics such as the wave form of individual action potentials,
are similar in the two regime$S1063-651X99)04701-7

PACS numbd(s): 87.10+¢, 87.19.La

[. INTRODUCTION stimulated neurons as well as cardiac muscle cells have
mainly concentrated on the description of the dynamics of
Neuron membranes generate brief electrical pulses, rdorced systems in either the excitable or the oscillatory re-
ferred to as “spikes,” the dominant carrier of information in gimes[9-15 and the effect of parameters changeihin
nervous systempgl]. Many neuron membranes are excitable.each of then{9]. To our knowledge, no attempt has been
Their membrane potential stabilizes at a constant value in th@ade to see how the two relate to each other, that is, how the
absence of perturbation. Following a pulselike perturbationeSponse is changed when one parameter is moved across the
the membrane potential returns to its steady state either difurcation point separating excitability from oscillation.
rectly when the pulse amplitude is below some threshold or [N our previous works we showed that both the oscillatory
after a large excursion, i.e., the action potential, when th@nd excitable membrane models exhibit slow and fast
pulse is above threshol®,3]. Many excitable membranes changes of the membrane potential, respectively, in the sub-

become oscillatory in response to large enough dc currer@nd suprathreshold regions and this property is responsible
stimulation, that is, they generate a regular train of actiorfor the fact that neuronal models such as the FHN equations

potentials. can mimic living neurons’ responses to external stimulation

Models such as the Hodgkin-HuxlgjH) equationg4]  [15]. Here, using this model we show thatg phase locking
and F|tzHugh_NagquFHN) equationis] reproduce suc- (i.e., the model membrane diSChargﬁjmeS Inp interstimu-
cessfully the two types of membrane behavior. In these modUs intervals andj input-output intervals repeat periodically
els, the sudden change from excitability to oscillation and’@gions in the two-parameter platrnold tongues change
vice versa is obtained by modifying the value of parameter§ontinuously “when the intrinsic dynamics of the model
representing temperature, conductance of ions, concentratidhe., dynamics of the model without external forcing
of each ion, intensity of current stimulation, and so on,[change$from excitable to oscillatory.” We abbreviate this
across critical valuegs]. From the point of view of dynami- duoted phrase aalong the transitiorin the following.
cal system theory, this abrupt transition is a bifurcafio8]. @ (b) 40

Figure 1 exemplifies membrane potential wave forms of =% s %
the HH equations in response to a step current stimulation =" ) ;zgj\Jva
with different intensities. The intensity of the current reaches *; —~ y m i —~ y m s
a bifurcation point between Figs(d and Xd), where the e fneed @0 e e
membrane model transits from excitable to oscillatory. The <% <%
bifurcation is called a double cycle and for the parameter fiij\/J\/J\/\/v EESJ\JULJ\/J\/
value above the bifurcation point a stable limit cycle exists. ! %
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In this paper we investigate how the dynamics of a neu- smelmsed smetmeeed

ronal model stimulated by periodic impulsive inputs changes g, 1. wave forms of the HH equations and membrane poten-
when the system switches from excitability to oscillations.ja| v (mv) versus timems) in response to step currenapplied at
Previous experimental and theoretical studies of periodicallyime 0 with different intensitiesl =0 (wA/lcm?) for t<0. (a) |
=3.2 (uAlcm?), single spike; (b) 1=6.0 (uA/cm?), double
spike; (©) 1=6.2 (uAlcm?), triple spike; and (d) |
*Electronic address: yoshino@bpe.es.osaka-u.ac.jp =7.0(uAlcm?), periodic firing.

1063-651X/99/5601)/956(14)/$15.00 PRE 59 956 ©1999 The American Physical Society



PRE 59 SYNTHETIC ANALYSIS OF PERIODICALLY ... 957

The dynamics of periodically forced nonlinear systems o [ \Réference Trajeclory _~
can be described by that of the corresponding Poincaes. (@) . =/ﬁ‘ (R
When the unforced model possesses a limit cycle, it is pos- > 0}
sible to approximate the Poincameaps by one-dimensional y=0 o~ N
maps[11,16. Various kinds of one-dimensional maps in- -2 [ Y Resting Point p ITP Separatix

cluding circle maps have been studied in the field of biologi-
cal rhythms and neuronal modelifg1,17. We define ap-
propriate one-dimensional maps to describe the dynamics of
both the oscillatory and excitable membrane models stimu-
lated by periodic pulse trains. This is possible by extending
the concepts of phase and isochron utilized for oscillatory
systems to excitable systerfik3]. Then the changes in the
two-parameter bifurcation diagrams can be understood by
changes in the shape of the one-dimensional maps.

Section 1l introduces the FHN model as an excitable- ©27
oscillatory membrane model. In Sec. Il we show the dynam-
ics of the FHN equations driven by periodic pulse trains and
observe that their global organization of the dynamics in the 2|
parameter space changes continuously along the transition.
Then, in Sec. IV we analyze the dynamics displayed in Sec.

[l py using one-dimensional maps that approximate Poin- (d)2 |

caremaps of the periodically forced system. In Sec. V we

further show that the continuous change of the Arnold > 0

tongues can be clearly understood by using an analytically

tractable one-dimensional map. Finally, we discuss our re- 20 -7 . .
sults in Sec. VL. 2 0 2

Il. EXCITABLE-OSCILLATORY MEMBRANE MODEL FIG. 2. x-y phase portraits of the FHN equations with several

FitzHugh-Nagumo equations are a theoretical model foivalues of the parameter (a) z=0.1, an excitable membrane with a

an excitable-oscillatory membrafis]: small spiral;(b) z=0.3368, an excitable membrane with a big spi-
ral; (c) z=0.338, bistable with a stable equilibrium point and a
X= c(x—x3/3—y+ 2), stable limit cycle; andd) z=0.347, an oscillatory membrane. (c)
and (d), LC denotes a limit cycle. The units of y and z are
1 arbitrary.
y=—<(x—by+a). 2.1 . . . . . .
c big spirals [Fig. 2b)]. In this case, each trajectory first

) ) moves toward the equilibrium along the RT as in Fi¢p)2
The variablex represents the membrane potential of the NeUHowever, since the equilibrium is less stable than in Fig.

ron, y the refractoriness. The parametsrepresents the cur- (g it winds with a relatively large radius around the equi-
rent stimulation to the membrane model. It corresponds @ ium and finally converges to the equilibrium. Asin-

the externally applied current intensity changed as the pagreases further, a neutral stable limit cy¢ieside unstable
rameter in Fig. 1 in the HH equations.is treated as the g o tside stableappears abruptly through a double cycle
constant dc current and changed as an intrinsic parameter i rcation. Then stable and unstable limit cycles are gener-
this paper. We sea=0.7, b=0.8, andc=3.0 throughout  geq[Fig. 2(c)], leading to bistability. The double cycle bi-

the paper. , _furcation constitutes the boundary separating the excitable
Let us illustrate the phase portrait of the model and how ityng oscillatory regimes. Finally, for still larger the stable

changes depending on the parameter valWhenzis close  gqyilibrium point loses its stabilitythe Hopf bifurcation
to zero, the system has a unique equilibrium péieStng  anq the system shows the monostable limit cycle oscillation

point P) that is either a stable node or a stable focus. Th?Fig. 2d)]. Figure 3 summarizes these changes of the dy-
model behaves as an excitable membrane. Figl@esBows  amics as a function of the parameter

the corresponding phase portrait with trajectories from sev-
eral initial states. A strong enough excitatory stimulation de-  |||. ARNOLD TONGUES OF THE PERIODICALLY
livered to the system at the restirgquilibrium) point P STIMULATED FHN EQUATIONS
displaces it rightward beyond the quasity@&TP) separatrix _ ) _ )
(i.e., thresholiland leads to an action potential. If the stimu- N this section we simulate the dynamics of the FHN
lus is below threshold, the state point returnsPtavithout stimulated by periodic pulse trains and characterize them in
passing through the active region. All trajectories in thethe two-parameter plane, i.e., the intengitynd the stimulus
plane first approach the thick curve referred to asr#fer- periodT.
ence trajectory(RT) and then asymptotically approach the
equilibridm ) gl(ong) the RT[19] ymp y app A. Phase locking and chaotic responses

As the z value increases, the focal equilibrium becomes Phase lockings are typical dynamics of periodically
less attractive and trajectories near the equilibrium consist diorced nonlinear systems. This is also the case for the neu-
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FIG. 3. One-parameter bifurcation diagram of the FHN equa- = 0 = 0 WW
tions. The steady states of the system are described. The abscissa is 25 L 1 25 S LA Tl L
the parametez representing the constant dc current. The ordinate is 2’ time time
the variablex, the membrane potential. The center curve represents \q/ 2r N l
the equilibrium potential, and the upper and lower curves represent >0 ”" N >0 \
the maximum and minimum values of oscillating membrane poten- 21 7 \ 2 5
tials, respectively. Solid and dashed lines represent stable and un- 2 9 2 -2 0 2
stable oscillations, respectively. The dotted line is for unstable equi-
librium potential. Sub Hopf. and DC are the subcritical Hopf and (ez s (f3 s
the double cycle bifurcation points, respectively. The unitg ahd By et >
z are arbitrary. 750 800 850 900 950 1000 550 800 B850 700 750 800
2 time 2 ime
ronal membrane model. If the membrane model fires periodi- o o
cally g times everyp successive pulses and each stimulus-
firing interval is locked, the response is referred topag 2 2

phase locking. The period of the dynamicgi§, whereT is
a period of the input train.
Figure 4 exemplifies the responses of the FHN equation§rai

to pe”.OdIC pu[se trains. We assume the ,dUty cycle of th(?)hase planélower panelsfor different values of, A, andT. Since
periodic pulse(i.e., the length of the p_ulse in each cht_e . the model’s variables and parameters are dimensionless, the units of
be zero throughout the paper. That is, each pulse shifts inpe yariaples and time axes are arbitrary. The parameter values of
stantaneously th? membrane poterntiab X+A. In each of iy (a) and(e) correspond to that in Fig.(8). The values ot in (b)

the phase portraits in Figs(a}-4(d), the trajectory forms a and(c) correspond to that in Fig.(B). The values o in (d) and(f)
closed curve, which indicates that the dynamics are periodiGorrespond to that in Fig.(&). The parameter valugsandT are as
For example, Fig. @) displays the 3:1 phase locking re- follows: (a) A=1.5 andT=3.0, 3:1 phase locking responge) A
sponse. It is hard to recognize from the figure whether the=-1.0 andT=18.2, 4:2 phase locking responge) A=0.9 andT
intrinsic dynamics of the model is excitable or oscillatory. =18.0, 2:1 phase locking responge) A=1.5 andT=18.0, 2:3
This implies that the forced dynamics of both the excitablephase locking responsdg) A=0.6732 andT=09.0, chaotic re-
and oscillatory models possess response characteristics cogponse(f) A=1.0 andT=14.9492, chaotic response.

mon to the periodic stimulation. Indeed, the model is excit- . ) . . .

able in Figs. 48)—4(c) and oscillatory in Fig. &). Since the able t(_) oscﬂ_latory.p.q phase locking regions are indicated
model’s equilibrium is a less attractive focus in Figgb)4 by the|r Iock[ng ratio. . .

and 4c), the trajectory winds several times around the equi- Figure 5 mcIudes_severaI vyell—known bn‘yrcauon struc-
librium between successive spikes and the correspondinﬁres explored experimentally in electrophysioldd] and

FIG. 4. Wave forms of the model in response to periodic pulse
ns (upper tracesand the corresponding trajectories in they

waveforms resemble a seesaw in the subthreshold region. numerical simulations of neuronal or muscle cell models

Figs. 4e) and 4f) the trajectory does not form a closed curve 1’.12’14'15 and elgctrlcal circuit$ 20]. Ir_1 the rest of this
and the responses are chaotic. section we roughly illustrate several main features of 2BDs

and theirzvalue dependence. For some statements, we ig-
nore small regions and the detailed structure of the diagrams.
In Fig. 5(a) the intrinsic dynamics of the model are excitable.

The dynamics of periodically forced nonlinear systemsThe organization of Fig.(®) is quite similar to that obtained
depends on parameter values of forcing inputs as well as thia the periodically stimulated squid giant axpt8]. For low
system’s intrinsic parameter values. In our case, the formentensitiesA, the model does not exhibit firingd response
parameters are the periddand the intensityA of the input  region [21]. For higher intensities, the dominant region is
trains and the latter is the paramerer 1:1. Then the 2:1 and 3:1 regions follow it. Betwgem and

In Fig. 5 we summarize the dependence of the model's’:q’,(p+p’):(g+q’) is subdominant and there exist more
dynamics on these parameters. For arbitrary but fixed valuesomplicated phase locking and nonlocking response regions
of z, the two-parameter plandl (A) is divided into several including period doubling cascades to chab4.
regions. In each region, the qualitative dynamics of the Figure Je) is for the oscillatory membrane model with
model are identical. The diagram is called the two-parametethe monostable limit cycle. In this case, there is no 0 re-
bifurcation diagram2BD). The parameter valueincreases sponse region since the model membrane fires spontaneously
from top[Fig. 5(a) to bottom Fig. %e)]. That is, the intrinsic  without inputs. The phase locking regions are known as Ar-
dynamics of the model undergoes the transition from excitnold tongues. The value of the input period at the lowest

B. Arnold tongues
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(a) 5 5(b)], this boundary moves downward gradually, reflecting
<, 3 ' ' ' | the fact that the threshold of the model becomes lower.
Z '1 43 1:1 Moreover, the phase lockings with higher periods and cha-
2 5 21 otic response regions that constitute “mountains” and “val-
= '0 411 3:1 0 . . leys” begin to appear along the boundary, indicating that the
2 10 18 26 34 42 degeneracy in Fig. (8 is unfolded. The dominant phase
Period T locking regions such as 1:1 and 2:1 for higher intensities
(b) 5 remain similar to those in Fig.(8). Figures %b) and 5c)

show that for a fixed, the mountains become lower and the
intervalley intervals become shorter as the stimulus pefiod
increases. Az increases from Fig. (6) to 5(c), the moun-
tains become higher and the intervalley intervals become
larger. Further increasing the value pfabove the double
cycle bifurcation point, intervalley intervals coincide with

Intensity A

© o K131 ;2 : ; the natural period of the oscillatioN and the bifurcation

<, N 'Y | structure gains periodicity as observed in the Figd) and

Z L : E: 2 5(e) for the periodically forced oscillatory membrane model.

8 o5 M4 : "i! i\ Note the nonlabeled region along the bottom of Figd)5

= '0 B 1‘ i The lower portion of this region is the O response region in
which the state point remains inside the unstable limit cycle
(basin of attraction of the equilibrium pojntSome of the

(d) 2 subthreshold dynamics are periodic and some are chaotic

<45 [21]. In the upper part of this region, the model shows peri-

S 9 odic or aperiodic burstinglike firingsfigures not shown

S5 | When the model is in the active phase of the bursts, the state

) point moves along the stable limit cycle. The state point is

kicked inside the unstable limit cycle by a stimulus, leading
to the silent phase of the bursts. These dynamics are due to

(O 49 37 26 3:10 27 the bistability of the intrinsic dynamics of the modé].
15 {

e A {“T« ! IV. ONE-DIMENSIONAL MAP ANALYSIS

2 1y

205 A}

The dynamics of periodically forced nonlinear systems is
usually analyzed by Poincareaps that describe sequential
dynamics of the system’s state at a fixed phase of the peri-
odic forcing [7]. In this section we analyze the dynamics

FIG. 5. Two-parameter bifurcation diagrams of the FHN equa—.II trated in S i b . di . | that
tions stimulated by periodic pulse trains for several values of conlustrated in- Sec. y using one-dimensional maps tha

stant dc currentz. The ordinate is the pulse intensify and the approximate Poincarmaps of the system.
abscissa is the period. The diagrams are obtained numerically
using the fourth-order Runge-Kutta methotit(=0.01). The domi-
nant p:q phase locking regionsp=1,2,3,4 andq=1,2,...) are
labeled by their locking ratio; nonlabeled regions include narrow In this subsection we first define the phase for the oscil-
locking regions with period 4 or higher and nonlockifig., chaotic  |latory FHN equations to describe the system'’s state. Then we
or quasiperiodig responses. The parameter valuare (8) z=0.1  extend the phase for the oscillatory system to that for the
(excitable with a small spiral (b) z=0.335 (excitable with a big  excitable one. This enables us to construct one-dimensional
spiral, (c) z=0.3368 (excitable with a big spira) (d) z=0.338  maps that approximate the Poincanaps of the periodically
(bistablg, and (e) z=0.347 (oscillatory with the monostable limit  stimylated FHN equations.

cycle). The units ofz and the axes are arbitrary. Let X=(x,y) denote a state point in the two-dimensional
fphase plane of the model. If a limit cycke of the FHN
equations is stable, then

A. Definition of one-dimensional maps

apex of the 1:1 region coincides with the natural period o
the unperturbed intrinsic oscillation, shly and that of 1:2 is
twice as large, i.e., 4. The global organization of the dia-
gram shows a repeated structure with periddéh the hori-
zontal direction. As in Fig. &), between p:q and
p':q’, (p+p’):(q+q’') is subdominant and chaotic re-
sponse regions are also observed.

Our finding in Fig. 5 is that the diagram changes continu-
ously as the model’s intrinsic parametevaries. In Fig. %a) ]
all the bifurcation curves seem to asymptotically approachvheret;<t<...<tj<... andtj—o asi—».D(Xt) rep-
the boundary that separates the O response region from tf@Sents the system’s flow aixds in the basin of attraction of
other regions. This implies that various kind of dynamicsy. X is the w-limit point of X [7]. WhenX is appropriately
degenerate along the boundary. As thalue increasedig.  chosen and;=iN, whereN is the natural period of the os-

V Xey, 3 {t} (i=12,..)),

O (X,t)—=Xey asi—ow, (4.2)
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cillation, the set of convergent sequences leads to the con- circle with radivs €

cept of the isochronWs(X) (Xey), a stable manifold
[3,23].

WE(X) ={X"; lim | (X' ,t) = (X,1)| - 0.X e ¥}.

t—oo

4.2

This means thatb(X’,t) starting fromX’ in the isochron
W3(X) and ®(X,t) starting fromX e y asymptotically ap-
proach each other and eventually, after a long enough time,
become indistinguishable.

We define the phase on the limit cycjeso that the state FIG. 6. Schematic diagram for the effect of a perturbati@ee
Xey can be described by its phasg(X), where ¢:y  the text for detailg. The units of the axes are arbitrary.

—S!. The phase oK e vy for the FHN equations is defined

as follows:¢(X) =0 whenX is at the point where the mem- approximation. By numerical simulations, we obtain the val-
brane potential attains its maximum valgeeak of the action yes oft,, t,, and theng(X), the approximation of the
potentia) along y. We call this point the datum point. Lét PTC, as

be the time necessary to reaghstarting from the datum

point and moving alongy; then ¢(X) is defined as H(X)=(X)— 8(X,A,e). (4.6

t (mod N).

These two concepts, namely, the isochron and the phase, |et us consider the case when the second stimulus is ap-
lead naturally to the definition of one-dimensional maps thaplied a timeT after the first one. Ifl is larger thart,,, then
describe responses of the limit cycle oscillator to an impulwe can consider that the state point when the second stimu-
sive perturbation. Suppose that a stimulus with intensity  |ys is applied is on the limit cycles with precision better

applied to the system ate y whose phase i§(X). ThenX  thane. The phase of the state point just before the second
is displaced by an amourk to the pointX’ e W¥(X") for  stimulus, denoted by’, will be

someX” e y. SinceX’ is eventually identified withX" e 1,

the phase of the system will be shifted eventuallyp(oX”). ¢ =dX)+T=¢—5(X,Ae)+T (mod N), (4.7)
The amount of phase shih(X)— ¢(X") is called phase

delay 5. The phase is delayed #>0 and advanced i \here ¢ representsp(X). We call the map betwees and
<0. Moreover, we can obtain the mgpS*— S* defined as &' the one-dimensional maiD); ¢’ =f(¢,T).
) " o _ As observed in Sec. Il, any trajectory of the excitable
9:p(X)—>¢(X") or H(X")=g((X))=(X)— 5('4 3 FHN equations with a small spiral approaches the RT. Using
' the RT, we extend the definitions of phase and 1D maps to
The graph of the map is calledthe phase transition curve the excitable model with a small spiral. We take the trajec-
(PTO). tory toward the equilibrium starting from the datum point as
In order to calculate the delay, one should take a limit the RT[Fig. 2@]. The datum point is on the right-hand
— . Practically, however, it is possible to approximate thePranch of thexnulicline and itsy value is the same as that of

delay by replacing the limit operation in EGt.2) by the equilibrium point. We define the phase of a state point on
the RT, instead of the limit cycle, as the time elapsed to
&X' 1) —D(X,b)||<e, (4.4  arrive there from the datum point along the RT. This RT

gives satisfactory results as we will show later. To obtain the
where X’ is a perturbed point fronX e y by the stimulus, delay functions and then 1D maps approximately, we use
X ey, ande is a small positive number that we determine. the same practical procedure as for the limit cycle oscillator

This means that we identifX’ with X  y within a finite T o .
) ; . ) . When the equilibrium point is a less attractive focus, tra-
time and assume that these two points behave identically "ctories converge to the equilibrium along the spiral, which
their future.(See Fig. 6.Lett, be the minimum time needed J 9 q 9 piral,

o . . -~ winds around the equilibrium point with relatively large ra-
for the perturbed poink’ to satisfy the above inequality dius. Even in this case, we take one of the winding trajecto-

(4.4) for some poiniXe y andt, be the time elapsed fok  ries as the RT as shown in Fig(t2. The definition of the

e v to arrive at®(X,t,) alongy. SinceX' e W¥(X) by the  system’s phase along the RT needs to be adapted to the fact

assumption, = ¢(x)—¢(7()_ Moreover, since®(X',t,) that the winding trajectory near the equilibrium is not as

:(D(ti) and ®(X,t,) =<I>(3(,tp) by the assumption, attrz_:lctive as either the Iimit_cycle or the §IOW manifold of the

8(X,A,¢) can be calculated as excitable FHN equations with a small spifab]. This means
that state points that are not on the RT do not asymptotically

S(X,Ae)=t,—t,. (4.5 gpproach it, but create their own spiral toward the equilib-

rium.

The notationd(X,A, ) accounts for the fact that the phase Rabinovitchet al. [18] showed that using the same defi-

shift § is a function of the state point when the stimulus isnition of phase, one can obtaihby the following modifica-

applied, the intensity of the stimulus, and the precision of thdion: (i) Let P, be the state point on the RT when a single
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pulse stimulus is applied arfd; be the perturbed point. The (@) 59 _ (Bgp
trajectory starting fromP; creates its own spiral winding .
around the equilibrium that converges to the equilibrium. Let o . SOJ

P, be the firsty-minimum point(i.e., bottom of the spiral & .
starting from the perturbed poilR; and P; be the closest é B
y-minimum point toP, on the RT.(ii) The time elapsed to 05 o i
reachP, from the perturbed poinP; providest, in Eq. © on @ 0n
(4.5). (i) The time elapsed to readP, from P, along the 100

RT providest, in Eq. (4.5). 75J

This procedure is an approximation with the assumption % 50 )
that P, and P; behave identically in their future, although < 5 o
there always exists some distance between them. If we ac- -
cept this approximation, the procedure to obtain the delay 0 25 50 75 100 0 5 10
function é is the same as that for the oscillatory or excitable o )
with small spiral. This procedure makes the error relatively 0
small since the phase of the state point that is not on the RT
is evaluated on the one-dimensional curve, constituted by the & 10/@

bottom of the spiral RT.

.

In the continuous 1D maps, we assumed that after each %
perturbation, the state point moved toward either the limit 0 JDO 20
cycle or the RT. This assumption is valid when the system is
monostable, i.e., it has a unique stable equilibrium point or a FIG. 7. Examples of the one-dimensional map and the corre-
unigue stable limit cycle. In the region of bistability, how- sponding orbit for the FHN equations. The parameter values of
ever, there are amplitude ranges for which some points of@)—(f) correspond to the dynamics in Figgap-4(f), respectively.
the limit cycle are kicked into the basin of attraction of the The units of the axes are arbitrary.
stable equilibrium point. For such phases, gaps appear in the
corresponding 1D maps as the next phase is not defz@d ~ 7(d) displays a period-2 orbit and Fig(fy a chaotic re-
We have constructed 1D maps in the bistable regimes angponse. The IOCking ratio of periOdica”y stimulated oscilla-
analyzed their iterations. However, in the following, we will tory FHN equations defined in Sec. Ill can be obtained from
not discuss in detail the influence of these gaps on the dythe circle map using the rotation numief11]. To this end,
namics of the system. This is due to the fact that they affecve use the mapdefined in Eq(4.7) without taking modulo
only small regions in the 2BDs of the system and in thisN. Let us call this mag for the moment. LetA ¢,, be the

work we are more interested in the changes in the globahhase difference betweep, ; and f(#,_4,T); then the

organization of the 2BDs. rotation numbep is defined as
B. Dynamics of the one-dimensional maps i A
The dynamics of the periodically stimulated FHN equa- n=1 "

tions can be described by the phases when the stimulus is p=_|im i ' (4.10

applied to the system. For any given initial phagg at

which the first stimulus is applied to the system, it is possiblgf {¢,} is a periodic orbit of periogh with rotation number
to define the Subsequent Sequemﬁ} indUCtively USing the p:q/p, then we say that the responsq)tgl phase |0cking,
1D mapf(¢,T): whereq is a positive integer

Go=F(n-1.T) =14 by_2,T) =" =", T). P
(4.9 qzzl Ad,. (4.10)

The phase sequen¢eé,,} are plotted on the one-dimensional
map for an arbitrary but fixed input period We call the
locus { ¢} the orbit of the map. fpy,, n= ¢ and by

# ¢, for 1=<k<p with k, m, andp being positive integers,
{¢.} is a periodic sequence of peripdA periodic sequence
{¢}RZ5 of periodp is stable if the following equation holds:

For example, Fig. (@) shows the 2:3 phase locking response
(p=1.5). If{¢,} is asymptotically aperiodic, them is irra-
tional. Indeed,p is an irrational number practically in Fig.
7(f).

Figures Ta) and 7e) are the cases for an excitable model
with a small spiral. Since the RT of the excitable model is
not a closed cycle topologically, the corresponding map is
<1 (4.9 not a circle map. Indeed, the domain of definition and the

range of the map arf0,) in this case. Nevertheless, the
shape of the map is similar to the oscillatory one, except the

Figure 7 shows examples of the 1D map. Figur@h @nd  long lasting flat portion on the right-hand side of the map.
7(f) are the 1D circle maps for the oscillatory model. TheThe steep negative slope portion of the map separates the
maps in Figs. ®) and 7f) first increase monotonically, then monotonically increasing curve on the left from the flat por-
decrease steeply, and then increase again gradually. Figutien on the right. It reflects the threshold behavior of the

p—1

11

=0

——= (o)

afP
d¢

of
@(%)




962 K. YOSHINO, T. NOMURA, K. PAKDAMAN, AND S. SATO PRE 59

membrane model. We denote the phase of the point with the threshold line
steepest negative slope &g . If the stimulus is applied at \
the phase aboveé,, the membrane model fires. If not, the
model does not fire. We denote the response to the inputs by
the symbols XLfiring) if the orbit of the map touches the flat
portion, and Q(nonfiring otherwise. More precisely, we as-
sign the symbols to the sequens,} as

o

0 for d)n € [0,¢h], threshold line

,
= R1
/

1 for ¢p> . (4.12

For example, the sequen¢e,}, except for its transient in
Fig. 7(a), is symbolized by 1001®. . . . If {¢,} is eventually
periodic with periodp except for its transient and the number
of 1 within thep successive symbols i then we say that
the response ig: g phase locking. The locking ratio obtained
from this definition practically coincides with that in Sec. lIl.
For example, Fig. (& shows the 3:1 phase locking response
In Fig. 7(e) the response is practically chaotic.

Figures 7b) and 7c) are the cases for the excitable model
with a big spiral. The 1D map in this case possesses sever

D

FIG. 8. (a) RT of the simple membrane model in tkey plane
in the case for &r<1. (b) RT of the simple membrane model in
‘the x-y plane in the case far=1, which corresponds to the limit
cycle of the FHN equations. The units of the parametand the
gfes are arbitrary.

peaks. The map is almost flat between these peaks. As in the V. SIMPLE MODEL
map for the excitable model with a small spifélig. 7(a)], . ) i )
the map is defined fop < [02). We symbolize the orbit of In the preceding section we observed that the bifurcation

the map in a similar way to the excitable model with a smaliStructure of the periodically stimulated FHN equations
spiral. We divide the map into the flat portions and the oth-changes continuously along the transition. In this section we
ers. Letdy(k=1, ... h) be the phase of the steepest nega_introduce a simple model to understand clearly how the
tive slope portion of the map for eackth peak, e (k shape of the 1D map changes continuously along the transi-
=1,...h) the phase where the map begins to increasdion and how it affects the bifurcation structure of the map.

First, we construct a simple model that reflects essential
dynamics of the forced FHN equations. The model is not
described by differential equations. We just assimilate the
system’s state on the RT of the FHN equations. We simplify
0 for ¢,e[0d;] or e(ex,di] (k=1,...h), the RT of the FHN equations in the-y phase plane as
shown in Fig. 8. It mimics the spiral-shaped RT of the FHN
_ equations and starts from the datum pdntwhich corre-

1 for dne(dy.era] (k=1,...h=1) or ¢n>dy. sponds to the peak of an action potential of the FHN equa-

(4.13  tions. The terminal point corresponds to the equilibrium of

the FHN equations. We parametrize the RT by one param-

Note that Eq.(4.12 (for a small spiral corresponds to Eq. eterr and assume that the converging rate of the winding
(4.13 (for a big spiral with h=1. For example, Figs.(B) trajectory to the terminal depends on the parametérhe
and 7c) show the 4:2 and 2:1 phase locking responses, reparameter corresponds to the parametsn the FHN equa-
spectively. Although the value is the same for Figs()  tions. Wherr =0 orr =1, the RT does not show a spiral. We
and 7c), the number of peaks in the maps is different sinceassociate the former with the excitable FHN equations with-
the parameter values of the stimuluk,A) are different. In out a spiral and the latter with the oscillatory limit cycle.
general, wherz increases, the number of peaks in the maps The state point on the simplified RT moves as follows:
increases. For a fixed and (T,A), the interpeak interval
gradually decreases gsincreases. Fop above some value, D—R;—L;—0O 1stround,
the peak disappears suddenly and the remaining portion is
almost flat with small oscillations. As thevalue becomes O—Rp;—L,—0 2ndround,
close to the double cycle bifurcation point, the number of the
peaks becomes largéend to infinity) and eventually the 1D
map may coincide with the circle map for the oscillatory
model.

We can conclude that the shape of the 1D map changes
continuously along the transition. To better understand this
continuity, we propose a simple model that mimics the topo-The point O is set to the origin and the datum poibt
logical behavior of the maps for the excitable-oscillatory=(1,0). Let L,=(an.bn) and R,=(cy,by)(m
FHN equations in the next section. =1,2,3...) be thecoordinates of the points depicted in Fig.

steeply for eactkth peak, anch the number of peaks. We
assign the symbols to the sequefds,} as

O—R,—Ly,—0 mthround,
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8. We setR;=(1/2,J/3/2) andL,=(—1/2,/3/2) and the The necessary time} , from (x;,y;) to (X2,y,), when
subsequent points are defined as these two points are on the lif@R; and in the samenth
round, is obtained from assumptidc) as

1 m—1 \/§ m—1 1 m—1
am=—5r"" bm:7 b Cm=5T o yit 7
ti_,=Aln Yot 7 (O=sy;sy,<by). (5.6
(m=123...). (5.1

The necessary time to reach the end of it round from
the datum poinD in the case &r <1, denoted byr(m), is

If 0=r<1, thenR L th igin. If
0=r<1, thenR,, and L, converge to the origin rﬂptained from assumptior@)—(c) as

=1, we assume that the RT changes its shape abruptly to t

closed orbit corresponding to the limit cycle definedas "

—R;—L;—0—D. See Fig. &). . 7
The following are the assumptions for the model. T(m)—”‘i; In b+ 7
(&) The moving velocity of the state point along the line

DR; is a function of they-coordinate value of the state point The natural periodN of the oscillation in the case=1 is

as

(5.7

y=(y—bi—n)/\ (A=—15, 5=0.01). (5.2 - (5.8

N—2)\In( bt 7
The velocity decreases linearly g@pproacheg; . We define the phase of the state point on the RT as the
(b) The state point jumps frorR,, to L, instantaneously time elapsed from the datum poibt along the RT in the
for eachmth round fn=1,2,...)(from R, to L, and from same way as for the FHN equations. Wheal we take
O to D in the casea =1). modulo N. For instance, the phase of the poiht,

(c) The moving velocity of the state point along the line =(a,,by) in the mth round, denoted bp(m,k), is obtained
L,0 is a function of they-coordinate value of the state point using Egs.(5.5—(5.7) as
as

(5.9

_ n(by+ 1)
y:(y+ 77)/)\ (53) p(m,k):T(m_1)+)\|n m)

It decreases linearly asapproaches the origin. OQR, in
the mth round along the lin€OR;, the velocity increases th
linearly with the same rate as in E¢.3) for L;O. When

There exists a critical poif®=(x;,y.) on the lineL,0
at separates firing from nonfiring when a stimulus with
intensity A is applied. Since the horizontal distance between

r=0, the state point reaches the paodwithin a finite time and the lineOR, is equal t0A, C=(—A/2.3A/2)
from D. We assume that the state point remains at the poinfp.n the poinC is t)etweeri_ anoiL  for so’me pos.i-
O mg me+

(d) The state point is displaced horizontally by an amountive integerme, the trajectory starting_ from the datum point
A>0 if it is perturbed by a stimulus. The perturbed point O Passes throug@ for each round until theneth round. The
returns to the RT horizontally and instantaneously. If thePh@se ofC depends on the round number of the trajectory.
perturbed point from thé ;O branch is abov®©R, (corre- For Osr<1, the phase of the poir€ in the mth round,
sponding to the thresholgit jumps to the right-hand branch denoted byé(m) for m=m, is
of the RT horizontally and instantaneousgn action poten-

tial generation If the perturbed point is below the threshold 7( \/§A+277)

and it is between thenth and the (n+1)th rounds of the 6(m)=r(m—1)+\In 200+ )2 | (5.10
RT, then it instantaneously returns to the RT in tmh mT 7

round. Thus the stimulus with intensitih may or may not induce a

From these assumptions we can obtain several quantitiqﬁing depending on its phase when the system’s phase is less
needed to construct the 1D map. The necessary tine  than 6(m,). If the phase is abové(m,), then the stimulus
from (x1,y1) to (Xz,y,), when these two points are on the always induces firing. When=1, the phase of the poir,

line DRy, is obtained from assumptic@ as denoted by, is uniquely determined as
bi+7-y,
t2p=An| g = =] (0=<yi=<y,=<by). (5.4 g—rin| ZO3AT27) | (5.1
1+ n yl 2(b1+ 77)2

The necessary timdaL2 from (Xq,y1) to (X,,Y2), when
these two points are on the ling O and in the samenth
round, is obtained from assumptidc) as

The 1D mapf(¢,T) is defined in the same way as the
FHN equationg4.7) and(4.8). In this case, we can calculate
the equation of the map(¢4,T) analytically. Let ¢, and
¢n+1 be the phase of the system when tith and the §
+1)th stimuli are applied, respectively. Théfp,T) in the
case for G=r<<1 is

Yo+ 7
yit7n

tr ,=Aln (0<y,<y;<b). (5.5
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Gpi1=Pp+ T for 0s¢,<6(1), 0<¢,<p(1,D), (5.12
¢n+1=q§n+r(k—1)+2)\ln(2112)+T for 0<¢,<0(1), p(lk)s¢,<p(lk+1) (k=1,23...), (5.13
k
—(by+ 7)%exp(¢n/N\) + 7(by+27)
¢n+1=)\ln< 2015 7) +T for (1)<¢p,<7(1), (5.19
- —{bn— -1 2
¢n+1:)\ln( neX ¢y ;(Tﬂ ST+ 77)+T for r((m—-1)<¢,<p(mm) (mMm=2,34...), (5.19
1
bntn
¢n+1=¢n+r(k—1)—r(m—1)+2)\ln<b " )+T for p(mm)<g¢,<o(m),
kT
p(mk)<¢,<p(mk+1l) (m=2,...my; k=mm+1,...), (5.1
_ 2 _ _ 2
¢n+1=)\ln( (Bt 7)"ex{ b (M~ }/NJ+ n(by+27) +T for 6(m)<é,<7(m) (m=23,...). (5.1
n(by+7)
The mapf(¢,T) in the case for=1 is
ni1=¢,+T(mod N) for 0<¢,<46, (5.18
(= (by+ ) 2exp( o /N)+ 7(by+27)
anH—)\In( (b1 7) +T (mod N) for 6<¢,<N. (5.19

Figure 9 exemplifies the 1D maps of the simple model.

The simple model behaves as an excitable membrane model @ ®'*
with a small spiral in Figs. @ and 9e) (r=0.0001), an 2 "
excitable membrane with a big spiral in Figgbpand 9c) & & 50 J
(r=0.5), and as an oscillatory membrane in Fig&l) &nd 10 ﬂ s/l
9(f) (r=1). As in Fig. 7 for the FHN equations, the shape of o oL
the maps in Figs. @ and 9d) are similar to each other, o 10 on 2o % o = gf 75 100
although the latter is a circle map and the former is not. ;100 @
Consider the case<9r<1 when the simple model be- (c s d 12
haves as an excitable membrane. Using Fib) @s an ex- -
ample, let us illustrate the shape of the map and how the £ 50 <
formulation of the map[Egs. (5.12—(5.17] is obtained. 25/ 1) A
SinceA=0.06 in Fig. 9b), the pointC is located betweeh. N N I P
andLg. As defined abovem, denotes the final round num- SO S
ber until which the RT passes throughm, can be obtained © % 210
as the maximum value oh that satisfiey.<b,,. Hence the g 2
value of m, in this case is 5. We start the illustration from - 20
smaller phases for the first rounthE& 1) on the RT where a <4
stimulus is applied. In the following, we use “the stimulus ,é
phase¢s” and “the perturbed phasep,” to denote the "
phase where the stimulus is applied and the phase of the state on

on the RT to which the perturbed point returns just after the

StlmUIatlon’. respectively. If.thmh stimulus pha_se I$S.’ the sponding orbit for the simple modéh) r =0.0001(excitable with a
(n_-l—l)th _st|mulus phase wil bdaerT whereT is the inter- small spiral, A=0.3, andT=3.5, 3:1 phase locking respongé)
stimulus interval. , r=0.5 (excitable with a big spiral A=0.06, andT=21.1, 4:2

The formulanor_] of the map for_the st|m_ulus phase Iessphalse locking responsé) r = 0.5 (excitable with a big spiral A
than (1) (i.e., until the end of the first rounds as follows. =0.03, andT=22.0, 2:1 phase locking responge) r = 1.0 (oscil-

(i) As shown in Fig. @), f(#,T) is a straight line with  |atory with a stable limit cycls A=0.3, andT=18.0, 2:3 phase
slope 1 for earlyg in [0,p(1,1)) as explained in the follow- |ocking responsefe) r=0.0001 (excitable with a small spiral A
ing. Until the stimulus phase reachp$l,1) (i.e., the state =0.7T=1.5, chaotic response; ar(f) r=1.0 (oscillatory with a
point is located betweeb andR;), the state point is always stable limit cycle, A=0.7, andT=15.0, chaotic response. The
above the threshold line, and the perturbed point returns indnits of all parameters and axes are arbitrary.

FIG. 9. Examples of the one-dimensional map and the corre-
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stantaneously to the same point as before the perturbatioSince the state point moves slowly near the pdht ¢,
Thus ¢,= ¢s, leading to Eq(5.12. e (6(1),7(1)) spans a relatively wide interval. On the other
(i) f(¢,T) is a straight line with slope 1 for¢g hand, since the state point moves relatively fast near the
€(p(1,1),p(1,2)) and then it increases discontinuously atpoint D, ¢, in this range changes little a5, changes. Thus
p(1,2) followed by the straight line with slope 1 fap  the map in this range is almost fldSee[15] for a similar
e (p(1,2)p(1,3)).f(¢,T) increases discontinuously again at argumeny.
p(1.k)(k=3, ... mg) and each discontinuity is followed by The formulation of the map in the second and higher
the straight line with slope 1 fos e (p(1k),p(1k+1))(k  rounds is as follows.
=3,...mg—1) and for ¢ e (p(1,my),6(1)). This process (iv) f(#,T) is still in the almost flat portion with the
with severalk generates the first peak dt=0(1). This is  relatively small value for¢ e (7(1),p(2,2)). The stimulus
explained as follows. The stimulus phase betwgéf k) phase greater than(1) and less thap(2,2) (i.e., the state
andp(1k+1)(k=1,... mg), as long as it is less thaf(1) point betweerD andR, in the second roundalways leads to
(i.e., the state point betweén andL,, L, andL;, Lyand afiring and the perturbed state point is transferred to the line
L,, L, andLs, andLgs and C in the first round in this DRy horizontally. In a similar way as ifiii ), the relationship
example, does not lead to a firing and the perturbed pointbetween the phasg¢g of the state point with ity coordinate
returns to the same point as before the perturbation on then the lineOR, in the second round is
line L, 0O in thekth round by assumptiofd). As the stimulus
phased¢;s is close tof(1), theperturbed point returns to the b= T(l)—)\ln(w—ﬂ> (5.23
line L;O with higher value ofk (further inside the spirg| s ’
leading to a higher value of the phagg after the stimulus. ] ) ) ) )
Since the round number of the returned point is constant fof"d ¢p IS as in Eq.(5.29. Thus we obtain the relationship
de(P(1K),p(1k+1)) (k=1,...m,—1) for eachk and betweendg, _and ¢, for th_ls range in the second round as in
for ¢ e (p(1,my),0(1)),f(,T) is a straight line with slope 1 EQ- (5.19 with m=2. As in(iii), (v(1),p(2,2)) spans a rela-
in each interval as ir(i). Thus we obtain Eq(5.13. Let tively wide interval a_ndf(¢>,1_') takes a small value and
Ly(—) andL(+) be the points infinitesimally above and forms almost flat portion agaings.
belowL, on the RT, respectively. The perturbed point from (V) f(¢,T) jumps upward discontinuously @(2,2) fol-
L.(—) returned in the K—1)th round. Thus the perturbed 'owed by the straight line with slope 1 for¢
phase ip(k—1Kk)(k=2, . .. m,). The perturbed point from € (P(2,2),p(2,3)).f(¢,T) increases discontinuously again at
Ly(+) returned in theth round. Thus the perturbed phase is P(2K)(k=3, .. . .m¢) and each discontinuity is followed by
p(k,K)(k=2, ... m.). Therefore, f(¢,T) jumps upward the straight line with slope 1 for¢e (p(2k),p(2k
discontinuously at each(1k)(k=2, ... mg) by +1)) (k=3,...m.—1) and ¢e(p(2m),0(2)). This
process with severak generates the second peak ét

n =6(2). In asimilar way to(ii) in the first round, we obtain
p(k,k)—p(k—l,k)=2kln(bk " ,7)- (520 Eq. (5.16 with m=2. Each discontinuity atp(2k)(k
=3,.../m,) is also given by Eq(5.20.
(i) f(¢,T) jumps downward discontinuously at(1) (vi) f(4,T) jumps downward discontinuously at(2)

(right after the first pegkand then it decreases further, fol- (right after the second pea&nd then decreases followed by
lowed by the almost flat portion fop e (6(1),7(1)). The the almost flat portion fogp € (6(2),7(2)). In a similar way
stimulus phase greater th&l1) and less tham(1) (i.e., the  to (iii) in the first round, we obtain E¢5.17) with m=2.

state point betwee@® andO in the first round always leads (vii) From the third round until thenc,th round (n,=5 in
to a firing and the perturbed state point is transferred to théhis example similar formulations in(iv)—(vi) repeat in this
line DR, horizontally by assumptiofd). Since the perturbed order for eachp e[ 7(m—1),7(m))(m=3, ... m,).

phase changes suddenly &tl) and the phase of the state  (viii) f(¢,T) changes its shape fab=7(m,). Since the
point on the lineDR, is small, ¢, or f(#,T) decreases stimulus phaseps is always aboved(m,) (i.e., they coordi-
discontinuously at(1). Thephasep of the state point with  nate of the state point is always below that®)f, the stimu-
its y coordinate on the lind.;O in the first round is ex- lus always induces a firing. Although it is not easy to see

pressed as from the Fig. 9b), the map still has a repetitive structure.
From the n.+1)th round, similar formulations iiv) and
l n(y+mn) - (vi), i.e., Egs.(5.15 and(5.17), repeat in this order for each
$s=Ain oot 72 (52D ge[r(m—1),7(m))(M=me+1me+2,...).

In this way, the straight lines with slope 1 with several
Since they coordinates of the point when the stimulus is discontinuities and the almost flat portion alternate ﬁ)r
applied and when the perturbed point returns just after thee [0,7(m)) in the 1D map and(¢,T) becomes almost flat
stimulation are the same by assumptidp the phasep, on ~ With a small-amplitude oscillation fot [ 7(me),>). The

the lineDRy is, by assumptiorta), number of peaks coincides with the value mf and in-
creases as the value ofincreases or the intensit de-

—y+bi+7n creasesm,=1,7(m.)=28.7, and the map has only one peak
$p=AIn Tbty (522 in Fig. 9@ (r=0.0001 andA=0.3):m.=5,r(m,)=42.4,

and the map has five peaks in Figbp (r=0.5 and A
By eliminatingy from Eqgs.(5.21) and(5.22, we obtain the =0.06); andm,=6,7(m,) =46.3, and the map has six peaks
relationship betweebs and ¢, and then we have E¢5.14. in Fig. 9c) (r=0.5 andA=0.03). The shape of the map is
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determined only by the parametersand A. The periodT (ags 41 31
shifts the map upward or downward without affecting its < 04
shapdsee Eqgs(5.12—(5.17) or Egs.(5.18 and(5.19]. 705 finz 1 1
As the value ofr approaches 1, the 1D map eventually Eol
gains periodic structure. The discontinuous increadek) 0 10 20 ot 40 50
—p(k—1k) in each peak of the map at eagfm,k)(m ® 4131
<m,) was given in Eq(5.20 and the natural period of the <oadll) Vo o
oscillation in the case=1 was given in Eq(5.8). Since ZoS I e o '
b,—b, asr—1, o1 ¢! 2l
0 10 2OP _dTSO 40 50
(©) 4131
p(k,k)—p(k—1k)—N (5.24 <04 N ]
8V e 42 32021 . 1
and the interpeak interval of the map o1 T\ i 1 \HKWXZ;I N
0 10 20Period T30 40 50
(d) 4131 4:5 3.4 49 37 413 310 31114
ig:i o:11| 32 A\ ¥ 5|38 2
f(m+1)—6(m)=2\In m —N, (5.25 ‘E g-g 11 12 1:3
m+1 201
0
wherem<m, asr—1. Hence, by taking modulbl for both ° ° Peariodt”” ° *

Lheecgr?]rgslg gifrg(;ﬂmggn ?Qig Ezgi éZ?fsetﬁ;htﬁemQZb tr;ﬁamngt% FIG. 10. Two-parameter bifurcation diagrams of the simple
. ) ; 2 tiodel stimulated by periodic pulse trains with several values of the
con.tlnuously.wh_en the model dynamlcs changes f!’om exCIti:)arameter. The ordinate is the pulse intensityand the abscissa is
ab'!'ty to oscillation. Ho_vvever, Strlc_tly speaking, this obser- the periodT. See the caption of Fig. 5 for the illustration of the
vation does not hold rigorously since we assume that th%iagram. The values of the parameteare (a) r =0.0001(excitable
shape of the RT changes abruptlyrat1l. The map for¢  with a small spiral, (b) r=0.25 (excitable with a relatively big
smaller thanr(1) exactly coincides with the map for oscil- spira), (c) r=0.5 (excitable with a big spira) (d) r = 1.0 (oscilla-
latory membraner(=1) in Egs.(5.18 and (5.19, but the tory with a limit cycle. The units ofr and the axes are arbitrary.
map for ¢> (1) differs slightly from that for¢p<<7(1).
Note that the map for=1 has complete periodicity with _ _
period N in both the domain and the range of the map for (M=1,...me=1) or ¢n>0(me). (527
¢=7(1). Since the shape of the RT changes continuously at )
the bifurcation point between excitable and oscillation in theFor r =1, we calculate the rotation numbgrby Eq. (4.10.
FHN equations, we can speculate strongly that the 1D mapOr instance, Figs. @), 9(b), 9(c), and 9d) show the 3:1,
changes continuously at the bifurcation point. 4:2, 2:1, and 2:3 phase locking responses, respectively, and
Comparing the 1D map of the FHN equatiof&g. 7) Figs. 9e) and 9f) show thg chaotic responses.
with that of the simple modeFig. 9), we can see a similar-  We show how the continuous change of the 1D map re-
ity. Hence the illustration for continuous change of thelates to the continuous change in the global organization of
simple map shape can be applicable for the FHN equationéf_‘e bifurcation structure. Figure 10 shows the 2BDs of the
As in Egs.(4.10, (4.12, and (4.13 for the FHN equa- simple mo_del for several valugs of The value of the.pa-
tions, we symbolize the map’s dynamics by(fiing) if the ~ rameterr increases from topFig. 1Qa)] to bottom [Fig.
orbit of the map touches the flat portion andr@®nfiring 10(d)].

otherwise. More precisely, we assign the symbols to the se- Figure 1Qa) is the case for extremely small. In this case,
quence{ ¢} as follows: Forr =0, the simple model behaves as an excitable membrane with a

small spiral and the corresponding 1D map is like Fi@)9
The global structure of Fig. 18) is similar to that of Fig.
0 for ¢,e[0,6(1)], 5(a). It show; wide 1:1 phase locking region for Iar'geince_
the maps shifted upward largely have a unique stable fixed
point on the almost flat portion. A decreases, a period
adding cascade generatipgl phase lockings takes place.
See[14] for more details. There is no 0 response region in
this simple model because the distance between iamd
the threshold line is 0.

Figures 10b) and 1@c) are the cases farrelatively large
when the simple model behaves as an excitable membrane
with a big spiral. In this case, the corresponding 1D maps are
like Figs. 9b) and 9c). The global structure of Figs. 1)

(m=1,...mg), and 1Qc) is similar to that of Figs. &) and 5c), respec-
tively.
In these diagrams, phase locking regions with higher pe-
1 for ¢pe(6(m),p(m+1m+1)] riods (mountains and valleyscan be observed in the 1:1

1 for ¢,>6(1) (5.26

and for O<r<1,

0 for ¢ne[0,8(1)] of ye(p(m,m),o(m)]
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phase locking region. As in the FHN equations, for a fired excitable membrane models stimulated by periodic pulse
[Figs. 1@b) and 1@c)], the peak height of the mountains trains. This was done by extending the concept of phase
becomes lower and the intervalley intervals become shorteand isochron utilized for oscillatory systems to excitable sys-
as the stimulus period increases. Moreover asincreases, tems. A similar method was used|ib8]. Different 1D maps
the height of the mountains becomes higher from Figbjl0 approximating Poincareaps of the periodically stimulated
to 10(c), and the intervalley intervals become larger. ThisFHN equations have been proposed. Ket R? be the state
change can be understood from the dynamics of the 1D magsint of the FHN equations. All trajectories in the FHN
of the simple model. Let us assume a 1D map that possesspbase plane approach the one-dimensional curve referred to
m. peaks for some fixed and A. Then the map has,  as the reference trajectory. For the oscillatory FHN equa-
almost flat portions between the peaks. The tagh almost  tions, the RT coincides with the limit cycle. Using the RT, a
flat portion spang 6(m.),~). Assume that the first almost key point to constructing a 1D map is finding an appropriate
flat portion of the map intersects with the diagonal for someone-to-one mappings that maps eaclX on the RT to a
small T. The intersection point is a stable fixed point of the uniquely determined scalar variable. Different mappihg
map and provides 1:1 phase locking region in the 2BD. Fofeads to a different 1D map. Léf, and¢, be such mappings
increasingT the map just shifts upward and the intersectionand X= ¢,(X) and Y= ¢,(X) be the corresponding scalar
point moves rightward. When the intersection point reachesariables, respectively. A 1D map is obtained by plotting
p(2,2), the intersection point disappears and the 1:1 phas¢(X;.,) againsté(X;), where X; represents the system’s
locking is terminated. Further increasifig the second al- state when theth stimulus is applied. Ify is a strictly in-
most flat portion intersects with the diagonal and 1:1 phasereasing function of¥, then there is a one-to-one relation-
locking appears again. This process alternateE iasreases ship between the twdi.e., Y=u(X) or, equivalently, X
until T=6(m,) and forT>6(m,) the 1:1 phase locking re- =u~*())]. Accordingly, this relationship suggests that cor-
gion persists. Sincene, the number of peaks in the map, responding 1D maf, is conjugate tdf , in the sense that
decreases aA increases, the range af with this alternate
structure(i.e., the appearance and disappearance of the 1:1 fy= uof yu~ L. (6.2
region for a fixed A value becomes smaller @sincreases.
For the same reason, the helght of the mountains in the ZBEPhus, onceu is determined, a simple geometrical construc-
becomes lower a3 increases. Similarly, since increase  tion allows us to transforni, to f, and vice versa. Using
asr increases, the height of the mountains becomes higher &sq. (6.1), we discuss the relation betwekfthe 1D map used
r increases. in this paper and some other maps. Nomuwtal. [15] con-
Since the 1D map gains periodicity in the direction of stituted a 1D map for the oscillatory FHN equations using a
both the domain of definition and the range of the map Withgeometrica| ang|@ to describe the System’s sta¥eon the
periodN asr becomes close to 1, the mountains appear pefimit cycle. They measured the angle between the line con-
riodically with periodN in the direction ofT and intervalley  necting the unstable equilibrium of the FHN equations to a
intervals become close to the natural period of the oscillatiortertain datum point on the limit cycle and the line connecting
N. Eventually, the bifurcation structure gains periodicity for the former to the poin}( on the limit Cyc|e_ Since the ang|e
the oscillatory mode[r =1, Fig. 14d)]. 6 increases as the time phageincreasesg is a strictly
increasing function ofs. Thus their 1D map is conjugate to
f. However, their 1D map cannot be extended to the excitable
FHN equations with a big spiral since the state point on the
We used FitzHugh-Nagumo equations as a model of neuspiral-shaped RT cannot be expressed uniquely by the geo-
ronal excitations. The model exhibits both an excitation inmetrical anglef, whereas our map can be extended. Doi
response to an impulsive current stimulation and a spontaneénd Satd[14] constituted a 1D map for the excitable FHN
ous oscillation depending on the parameter vaugvhich  equations with a small spiral using the membrane potential
reflects the intensity of the constant dc applied to the modelof the model. This is possible since the membrane potential
The critical points that separate the excitable from the oscilincreases monotonically toward the resting potential from the
latory membrane models are the double cycle and the Hophost hyperpolarized state after every firitege Fig. 2 and
bifurcations in the model. thus, within this range, the state point on the RT and the
In this study we explored the model’s dynamics when themembrane potential have a one-to-one correspondence. Their
membrane model is stimulated periodically by impulsivelD map is also conjugate to ours. Since the one-to-one cor-
trains with various period3 and intensitiesA. As in many respondence between the membrane potential and the state
other nonlinear systems, the forced model shopfdphase point is limited within the range mentioned above, it cannot
lockings as well as chaotic dynamics depending on the pabe extended to the oscillatory or the excitable FHN equations
rameter valuesT,A). The dynamics of the model was sum- with a big spiral. Kaplaret al. [21] computed the area,
marized in the 2BD in T,A) parameter plane. In particular, under the deflection induced by thi stimulus and showed
we showed that the global organization of the 2BD changeshat plots of the return maps representidg versus.4; .
depending on the model’s intrinsic paramezeDespite the revealed the characteristics of the response of the membrane
drastic change in the system’s asymptotic dynamics at th& periodic stimulation. In order to compare their method
double cycle bifurcation point, the changes in the diagranwith the one used in this paper, we computed the deflection
are a continuous function of the parameter vatue A induced by a pulse arriving at a phageand observed
To see these changes, we defined the appropriate 1D matigt, except for short phases corresponding to the action po-
f to describe the dynamics of both the oscillatory and thdential, A is a strictly increasing function op that reveals

VI. DISCUSSION
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that their return maps can be derived from ours and vicereasing map and the other is a nonmonotonic one. The
versa using Eq6.1) for the limited phase. Kaplaet al.[21]  former case is relatively well analyzdd1] and the maps
were interested in the skipping patterns in the response of ashow only periodic and quasiperiodic dynamics. Stable fixed
excitable cell to a subthreshold periodic stimulation. There{points or periodic orbits with different periods cannot coexist
fore, they limited their investigation to small amplitudes andin the map. In the latter case, the nonmonotonic circle maps
short periods, as skipping was mainly observed in this paean exhibit complex dynamics including multistability and
rameter range. In contrast, we were interested in the responsbaos as well as periodic dynamics. In cases of forced limit
in a wider parameter range, which explains that we obtainedycle oscillators, in general, the monotonically increasing
1D maps with a wider variety of shapésee Fig. Jthan the maps are obtained for weak stimulatiofiewer intensitieg
ones they observed. and the nonmonotonic ones for higher intensities. The former

In comparison with these three methods exemplifieds referred to as a type 1 map and the latter as typ& 2%5|.
above, the state point on the RT for both the excitable FHNThis means that complex dynamics regions, including cha-
equations with a spiral and the oscillatory FHN equationstic regions, in the 2BD will be observed for a relatively
can be expressed uniquely by the time phase that we used fBigh stimulus intensity region, especially near the boundary
& in this paper. This advantage allows us to investigate th&t€nsity separating one type from the other. This was con-
continuous changes in the 2BD by the continuous changes #med in our simulations, although several complex dynam-
the shape of the 1D maps. Along the transition from excit-ICS Were observed even for small intensity regictigs is
able to oscillatory regimes of the model, the 1D map changegeqause the forced dynamics of'the 'quell cannot be de-
continuously from the multimodal maps to the circle maps'sprlbed_completely _by 1.D maps, 1.€., I!mltat|on of the one-

. . . . . . dimensional approximation of the Poincaraps.
We confirmed this observation analytically by using simple . : ; .
1D maps that mimic the maps for the forced FHN model. _Second, we summarize the bifurcation structure_of peri-
. . odically forced excitable membranes and compare it to that
The continuous changes in 2BDs result from the fact that

: ) ; . of the circle maps using Fig. 5. Figuréabis a typical 2BD
despite the discontinuous change that takes place in the gl?ﬁ forced excitat?le merﬁbre?nes. Ingthese diag?la?ms the domi-
bal attractor of the unforced system at the double cycle bi'nant regions are 1:1, 2:1, and 3:1 phase locking régions and
furcation, the underlying vector field that governs the dy- o )

. 4 , . .7 "the subdominant regions withp¢-p'):(q+q’') were ob-
namics changes continuously withThis fact can be seen in served between adjacent dominant regions wite and

Fig. 1, which shows that the number of transient spikes gen; :q’. Between these subdominant regions, several chaotic

!
er_ated by the _exqtable membrane model increases as tI%gions were observed. In contrast to the circle map cases,
stimulus intensity increases toward the double cycle bifurca;

tion point. Let us provide a formal basis for the relationthes.e complex _dynami_cs reg_ions were observed even in the
between t.he continuity of the flow and that of the Arnold relatively low stimulus intensity regions, for exam_ple, along
tongues. We denote b (X,t:2) the flow associated with the bounQary that sep_arate; the O response region from the

: NS . .. other regions. In our simulations, various kinds of dynamics
Eq. (2.1); then®(X,t;2) is a continuous function of all its

. o including chaotic ones were unfolded from this boundary
argurser:jts. Th; gygamrl]cs of the perl?dlrc]:ally foré:ed SYSeMYhen the parameterincreased toward the double cycle bi-
can be described by the iterations of the two-dimension ti int. Thi ts that the chaofi . b-
map F(X.A.T.2) = o o ®(X,T:2), whereg, is the transla- urcation point. This suggests that the chaotic regions o

i £th ¢ 0) 1201, Locki q served for lowerz along the boundary may increase as
tlort]ho e vde_c Org_‘t' ) [f th]. oc m_ghreseﬁnsbes cc()jrre_sponf increases and connect with the chaotic regions in the higher
0 the periodic orbits ot the map. Thus the boundaries o intensity regions generated by the type 0 circle maps.
Arnold tongues in theT,A) parameter plane correspond to

singularities of the mag-. Typically, these boundaries are Although we did not report them in this paper, we also
) ' analyzed continuous changes of Arnold tongues in Thé
saddle-node bifurcations, that is, poind* such that yz intiou g gues in A

. g s N o . parameter plane for a piecewise linear version of the FHN
FP(X*,A*,T*,2)=X* and detDF,,.—1)=0. Since these equations, in particular at the singular lingt> [27]. In
conditions are persistent under small perturbations of thenis case, the transition from an excitable to an oscillatory
mapF and this map depends continuously on the parametef,embrane when the intrinsic parametevalue is varied is
z, we “expect” that if such a bifurcation takes place at the nejther a Hopf nor a double cycle bifurcation, but at the
parametersA; and Tg for somez,, a similar bifurcation onset of the appearance of the limit cycle oscillation, the
takes place for somA* andT* nearA§ andT§ for znear period of the oscillation is infinity. Therefore, aslecreases
Zo. The above explanation provides further theoretical supfrom the oscillatory regime toward the transition point, the
port for the continuous changes observed in the 2BDg as periodic structure of the 2BD is stretched in the peribd
was varied. A detailed analysis of the bifurcation of the mapdirection and eventually the diagram with period infinity co-
F will be performed in the future to complement the aboveincides with that for the excitable medium.
statement. Finally, we conclude the paper with the following state-
A further observation of the continuous changes in thement: When an appropriate control parameter of the neuronal
2BD is that the location of the chaotic regions in the 2BD membrane model changes its value, the model's behavior
may change continuously along the transition, although deehanges from quiescent to sustained oscillation. One can in-
tailed investigations are needed to clarify this. Let us makeerpret this as the model's dynamics representing the inten-
this statement clear. sity of the control parameter in an all-or-none fashion. That
To this end, first we summarize the dynamics of circleis, for the parameter range within the quiescent state, no
maps. Circle maps can be divided into two classes accordingpike(i.e., no information about the control parameter value
to their topological properties. One is a monotonically in-is transmitted by the membrane. If the state of the model is
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