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Synthetic analysis of periodically stimulated excitable and oscillatory membrane models

K. Yoshino,* T. Nomura, K. Pakdaman, and S. Sato
Department of Systems and Human Science, Graduate School of Engineering Science, Osaka University,

Toyonaka 560-8531, Osaka, Japan
~Received 10 April 1998!

Many excitable neuronal membranes become oscillatory when stimulated by large enough dc currents. In
this paper we investigate how the transition from excitable to oscillatory regimes affects the response of the
membrane to periodic pulse trains. To this end, we examine how the dynamics of periodically stimulated
FitzHugh-Nagumo neuron model changes as the system switches from excitability to oscillation. We show
that, despite the important change in the asymptotic dynamics of the unperturbed model,p:q phase-locking
~i.e., the model membrane dischargesq times inp interstimulus intervals andq input-output intervals repeat
periodically! regions in the stimulus period-stimulus amplitude parameter plane~Arnold tongues! change
continuously when the model changes from excitable to oscillatory. We provide further evidence for the
continuous change of the Arnold tongues by using an analytically tractable one-dimensional map that approxi-
mates the Poincare´ map of the forced system. We argue that the smooth change in the Arnold tongues results
from the fact that, despite the qualitative difference between the asymptotic dynamics of unforced excitable
and oscillatory regimes, other aspects of the dynamics such as the wave form of individual action potentials,
are similar in the two regimes.@S1063-651X~99!04701-7#

PACS number~s!: 87.10.1e, 87.19.La
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I. INTRODUCTION

Neuron membranes generate brief electrical pulses,
ferred to as ‘‘spikes,’’ the dominant carrier of information
nervous systems@1#. Many neuron membranes are excitab
Their membrane potential stabilizes at a constant value in
absence of perturbation. Following a pulselike perturbati
the membrane potential returns to its steady state eithe
rectly when the pulse amplitude is below some threshold
after a large excursion, i.e., the action potential, when
pulse is above threshold@2,3#. Many excitable membrane
become oscillatory in response to large enough dc cur
stimulation, that is, they generate a regular train of act
potentials.

Models such as the Hodgkin-Huxley~HH! equations@4#
and FitzHugh-Nagumo~FHN! equations@5# reproduce suc-
cessfully the two types of membrane behavior. In these m
els, the sudden change from excitability to oscillation a
vice versa is obtained by modifying the value of paramet
representing temperature, conductance of ions, concentr
of each ion, intensity of current stimulation, and so o
across critical values@6#. From the point of view of dynami-
cal system theory, this abrupt transition is a bifurcation@7,8#.

Figure 1 exemplifies membrane potential wave forms
the HH equations in response to a step current stimula
with different intensities. The intensity of the current reach
a bifurcation point between Figs. 1~c! and 1~d!, where the
membrane model transits from excitable to oscillatory. T
bifurcation is called a double cycle and for the parame
value above the bifurcation point a stable limit cycle exis

In this paper we investigate how the dynamics of a n
ronal model stimulated by periodic impulsive inputs chang
when the system switches from excitability to oscillation
Previous experimental and theoretical studies of periodic
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stimulated neurons as well as cardiac muscle cells h
mainly concentrated on the description of the dynamics
forced systems in either the excitable or the oscillatory
gimes @9–15# and the effect of parameters changeswithin
each of them@9#. To our knowledge, no attempt has be
made to see how the two relate to each other, that is, how
response is changed when one parameter is moved acros
bifurcation point separating excitability from oscillation.

In our previous works we showed that both the oscillato
and excitable membrane models exhibit slow and f
changes of the membrane potential, respectively, in the s
and suprathreshold regions and this property is respons
for the fact that neuronal models such as the FHN equat
can mimic living neurons’ responses to external stimulat
@15#. Here, using this model we show thatp:q phase locking
~i.e., the model membrane dischargesq times inp interstimu-
lus intervals andq input-output intervals repeat periodically!
regions in the two-parameter plane~Arnold tongues! change
continuously ‘‘when the intrinsic dynamics of the mod
~i.e., dynamics of the model without external forcin!
@changes# from excitable to oscillatory.’’ We abbreviate thi
quoted phrase asalong the transitionin the following.

FIG. 1. Wave forms of the HH equations and membrane pot
tial V ~mV! versus time~ms! in response to step currentI applied at
time 0 with different intensities.I 50 (mA/cm2) for t,0. ~a! I
53.2 (mA/cm2), single spike; ~b! I 56.0 (mA/cm2), double
spike; ~c! I 56.2 (mA/cm2), triple spike; and ~d! I
57.0(mA/cm2), periodic firing.
956 ©1999 The American Physical Society
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PRE 59 957SYNTHETIC ANALYSIS OF PERIODICALLY . . .
The dynamics of periodically forced nonlinear syste
can be described by that of the corresponding Poincare´ maps.
When the unforced model possesses a limit cycle, it is p
sible to approximate the Poincare´ maps by one-dimensiona
maps @11,16#. Various kinds of one-dimensional maps i
cluding circle maps have been studied in the field of biolo
cal rhythms and neuronal modeling@11,17#. We define ap-
propriate one-dimensional maps to describe the dynamic
both the oscillatory and excitable membrane models stim
lated by periodic pulse trains. This is possible by extend
the concepts of phase and isochron utilized for oscillat
systems to excitable systems@18#. Then the changes in th
two-parameter bifurcation diagrams can be understood
changes in the shape of the one-dimensional maps.

Section II introduces the FHN model as an excitab
oscillatory membrane model. In Sec. III we show the dyna
ics of the FHN equations driven by periodic pulse trains a
observe that their global organization of the dynamics in
parameter space changes continuously along the trans
Then, in Sec. IV we analyze the dynamics displayed in S
III by using one-dimensional maps that approximate Po
carémaps of the periodically forced system. In Sec. V w
further show that the continuous change of the Arn
tongues can be clearly understood by using an analytic
tractable one-dimensional map. Finally, we discuss our
sults in Sec. VI.

II. EXCITABLE-OSCILLATORY MEMBRANE MODEL

FitzHugh-Nagumo equations are a theoretical model
an excitable-oscillatory membrane@5#:

ẋ5c~x2x3/32y1z!,

ẏ5
1

c
~x2by1a!. ~2.1!

The variablex represents the membrane potential of the n
ron, y the refractoriness. The parameterz represents the cur
rent stimulation to the membrane model. It corresponds
the externally applied current intensity changed as the
rameter in Fig. 1 in the HH equations.z is treated as the
constant dc current and changed as an intrinsic paramet
this paper. We seta50.7, b50.8, andc53.0 throughout
the paper.

Let us illustrate the phase portrait of the model and how
changes depending on the parameter valuez. Whenz is close
to zero, the system has a unique equilibrium point~resting
point P) that is either a stable node or a stable focus. T
model behaves as an excitable membrane. Figure 2~a! shows
the corresponding phase portrait with trajectories from s
eral initial states. A strong enough excitatory stimulation d
livered to the system at the resting~equilibrium! point P
displaces it rightward beyond the quasitype~QTP! separatrix
~i.e., threshold! and leads to an action potential. If the stim
lus is below threshold, the state point returns toP without
passing through the active region. All trajectories in t
plane first approach the thick curve referred to as therefer-
ence trajectory~RT! and then asymptotically approach th
equilibrium P along the RT@19#.

As the z value increases, the focal equilibrium becom
less attractive and trajectories near the equilibrium consis
s
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big spirals @Fig. 2~b!#. In this case, each trajectory firs
moves toward the equilibrium along the RT as in Fig. 2~a!.
However, since the equilibrium is less stable than in F
2~a!, it winds with a relatively large radius around the equ
librium and finally converges to the equilibrium. Asz in-
creases further, a neutral stable limit cycle~inside unstable
and outside stable! appears abruptly through a double cyc
bifurcation. Then stable and unstable limit cycles are gen
ated@Fig. 2~c!#, leading to bistability. The double cycle b
furcation constitutes the boundary separating the excita
and oscillatory regimes. Finally, for still largerz, the stable
equilibrium point loses its stability~the Hopf bifurcation!
and the system shows the monostable limit cycle oscillat
@Fig. 2~d!#. Figure 3 summarizes these changes of the
namics as a function of the parameterz.

III. ARNOLD TONGUES OF THE PERIODICALLY
STIMULATED FHN EQUATIONS

In this section we simulate the dynamics of the FH
stimulated by periodic pulse trains and characterize them
the two-parameter plane, i.e., the intensityA and the stimulus
periodT.

A. Phase locking and chaotic responses

Phase lockings are typical dynamics of periodica
forced nonlinear systems. This is also the case for the n

FIG. 2. x-y phase portraits of the FHN equations with seve
values of the parameterz: ~a! z50.1, an excitable membrane with
small spiral;~b! z50.3368, an excitable membrane with a big sp
ral; ~c! z50.338, bistable with a stable equilibrium point and
stable limit cycle; and~d! z50.347, an oscillatory membrane. In~c!
and ~d!, LC denotes a limit cycle. The units ofx, y and z are
arbitrary.
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958 PRE 59K. YOSHINO, T. NOMURA, K. PAKDAMAN, AND S. SATO
ronal membrane model. If the membrane model fires perio
cally q times everyp successive pulses and each stimul
firing interval is locked, the response is referred to asp:q
phase locking. The period of the dynamics ispT, whereT is
a period of the input train.

Figure 4 exemplifies the responses of the FHN equati
to periodic pulse trains. We assume the duty cycle of
periodic pulse~i.e., the length of the pulse in each cycle! to
be zero throughout the paper. That is, each pulse shifts
stantaneously the membrane potentialx to x1A. In each of
the phase portraits in Figs. 4~a!–4~d!, the trajectory forms a
closed curve, which indicates that the dynamics are perio
For example, Fig. 4~a! displays the 3:1 phase locking re
sponse. It is hard to recognize from the figure whether
intrinsic dynamics of the model is excitable or oscillator
This implies that the forced dynamics of both the excita
and oscillatory models possess response characteristics
mon to the periodic stimulation. Indeed, the model is ex
able in Figs. 4~a!–4~c! and oscillatory in Fig. 4~d!. Since the
model’s equilibrium is a less attractive focus in Figs. 4~b!
and 4~c!, the trajectory winds several times around the eq
librium between successive spikes and the correspon
waveforms resemble a seesaw in the subthreshold regio
Figs. 4~e! and 4~f! the trajectory does not form a closed cur
and the responses are chaotic.

B. Arnold tongues

The dynamics of periodically forced nonlinear syste
depends on parameter values of forcing inputs as well as
system’s intrinsic parameter values. In our case, the for
parameters are the periodT and the intensityA of the input
trains and the latter is the parameterz.

In Fig. 5 we summarize the dependence of the mod
dynamics on these parameters. For arbitrary but fixed va
of z, the two-parameter plane (T,A) is divided into several
regions. In each region, the qualitative dynamics of
model are identical. The diagram is called the two-param
bifurcation diagram~2BD!. The parameter valuez increases
from top @Fig. 5~a! to bottom Fig. 5~e!#. That is, the intrinsic
dynamics of the model undergoes the transition from ex

FIG. 3. One-parameter bifurcation diagram of the FHN eq
tions. The steady states of the system are described. The absc
the parameterz representing the constant dc current. The ordinat
the variablex, the membrane potential. The center curve repres
the equilibrium potential, and the upper and lower curves repre
the maximum and minimum values of oscillating membrane pot
tials, respectively. Solid and dashed lines represent stable and
stable oscillations, respectively. The dotted line is for unstable e
librium potential. Sub Hopf. and DC are the subcritical Hopf a
the double cycle bifurcation points, respectively. The units ofx and
z are arbitrary.
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Figure 5 includes several well-known bifurcation stru
tures explored experimentally in electrophysiology@13# and
in numerical simulations of neuronal or muscle cell mod
@11,12,14,15# and electrical circuits@20#. In the rest of this
section we roughly illustrate several main features of 2B
and theirz-value dependence. For some statements, we
nore small regions and the detailed structure of the diagra
In Fig. 5~a! the intrinsic dynamics of the model are excitab
The organization of Fig. 5~a! is quite similar to that obtained
in the periodically stimulated squid giant axon@13#. For low
intensitiesA, the model does not exhibit firing~0 response
region! @21#. For higher intensities, the dominant region
1:1. Then the 2:1 and 3:1 regions follow it. Betweenp:q and
p8:q8,(p1p8):(q1q8) is subdominant and there exist mo
complicated phase locking and nonlocking response reg
including period doubling cascades to chaos@14#.

Figure 5~e! is for the oscillatory membrane model wit
the monostable limit cycle. In this case, there is no 0
sponse region since the model membrane fires spontaneo
without inputs. The phase locking regions are known as
nold tongues. The value of the input period at the low
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FIG. 4. Wave forms of the model in response to periodic pu
trains ~upper traces! and the corresponding trajectories in thex-y
phase plane~lower panels! for different values ofz, A, andT. Since
the model’s variables and parameters are dimensionless, the un
the variables and time axes are arbitrary. The parameter valuesz
in ~a! and~e! correspond to that in Fig. 2~a!. The values ofz in ~b!
and~c! correspond to that in Fig. 2~b!. The values ofz in ~d! and~f!
correspond to that in Fig. 2~d!. The parameter valuesA andT are as
follows: ~a! A51.5 andT53.0, 3:1 phase locking response;~b! A
51.0 andT518.2, 4:2 phase locking response;~c! A50.9 andT
518.0, 2:1 phase locking response;~d! A51.5 andT518.0, 2:3
phase locking response;~e! A50.6732 andT59.0, chaotic re-
sponse;~f! A51.0 andT514.9492, chaotic response.
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apex of the 1:1 region coincides with the natural period
the unperturbed intrinsic oscillation, sayN, and that of 1:2 is
twice as large, i.e., 2N. The global organization of the dia
gram shows a repeated structure with periodN in the hori-
zontal direction. As in Fig. 5~a!, between p:q and
p8:q8, (p1p8):(q1q8) is subdominant and chaotic re
sponse regions are also observed.

Our finding in Fig. 5 is that the diagram changes contin
ously as the model’s intrinsic parameterz varies. In Fig. 5~a!
all the bifurcation curves seem to asymptotically approa
the boundary that separates the 0 response region from
other regions. This implies that various kind of dynam
degenerate along the boundary. As thez value increases@Fig.

FIG. 5. Two-parameter bifurcation diagrams of the FHN eq
tions stimulated by periodic pulse trains for several values of c
stant dc currentz. The ordinate is the pulse intensityA and the
abscissa is the periodT. The diagrams are obtained numerica
using the fourth-order Runge-Kutta method (nt50.01). The domi-
nant p:q phase locking regions (p51,2,3,4 andq51,2, . . . ) are
labeled by their locking ratio; nonlabeled regions include narr
locking regions with period 4 or higher and nonlocking~i.e., chaotic
or quasiperiodic! responses. The parameter valuez are ~a! z50.1
~excitable with a small spiral!, ~b! z50.335 ~excitable with a big
spiral!, ~c! z50.3368 ~excitable with a big spiral!, ~d! z50.338
~bistable!, and ~e! z50.347 ~oscillatory with the monostable limi
cycle!. The units ofz and the axes are arbitrary.
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5~b!#, this boundary moves downward gradually, reflecti
the fact that the threshold of the model becomes low
Moreover, the phase lockings with higher periods and c
otic response regions that constitute ‘‘mountains’’ and ‘‘va
leys’’ begin to appear along the boundary, indicating that
degeneracy in Fig. 5~a! is unfolded. The dominant phas
locking regions such as 1:1 and 2:1 for higher intensit
remain similar to those in Fig. 5~a!. Figures 5~b! and 5~c!
show that for a fixedz, the mountains become lower and th
intervalley intervals become shorter as the stimulus perioT
increases. Asz increases from Fig. 5~b! to 5~c!, the moun-
tains become higher and the intervalley intervals beco
larger. Further increasing the value ofz above the double
cycle bifurcation point, intervalley intervals coincide wit
the natural period of the oscillationN and the bifurcation
structure gains periodicity as observed in the Figs. 5~d! and
5~e! for the periodically forced oscillatory membrane mod
Note the nonlabeled region along the bottom of Fig. 5~d!.
The lower portion of this region is the 0 response region
which the state point remains inside the unstable limit cy
~basin of attraction of the equilibrium point!. Some of the
subthreshold dynamics are periodic and some are cha
@21#. In the upper part of this region, the model shows pe
odic or aperiodic burstinglike firings~figures not shown!.
When the model is in the active phase of the bursts, the s
point moves along the stable limit cycle. The state point
kicked inside the unstable limit cycle by a stimulus, leadi
to the silent phase of the bursts. These dynamics are du
the bistability of the intrinsic dynamics of the model@22#.

IV. ONE-DIMENSIONAL MAP ANALYSIS

The dynamics of periodically forced nonlinear systems
usually analyzed by Poincare´ maps that describe sequenti
dynamics of the system’s state at a fixed phase of the p
odic forcing @7#. In this section we analyze the dynamic
illustrated in Sec. III by using one-dimensional maps th
approximate Poincare´ maps of the system.

A. Definition of one-dimensional maps

In this subsection we first define the phase for the os
latory FHN equations to describe the system’s state. Then
extend the phase for the oscillatory system to that for
excitable one. This enables us to construct one-dimensi
maps that approximate the Poincare´ maps of the periodically
stimulated FHN equations.

Let X5(x,y) denote a state point in the two-dimension
phase plane of the model. If a limit cycleg of the FHN
equations is stable, then

; X̄Pg, ' $t i% ~ i 51,2, . . .!,

F~X,t i !→X̄Pg as i→`, ~4.1!

wheret1,t2,•••,t i,••• andt i→` asi→`.F(X,t) rep-
resents the system’s flow andX is in the basin of attraction o
g. X̄ is thev-limit point of X @7#. WhenX is appropriately
chosen andt i5 iN, whereN is the natural period of the os

-
-
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cillation, the set of convergent sequences leads to the
cept of the isochronWs(X̄) (X̄Pg), a stable manifold
@3,23#.

Ws~X̄!5$X8; lim
t→`

iF~X8,t !2F~X̄,t !i→0,X̄Pg%.

~4.2!

This means thatF(X8,t) starting fromX8 in the isochron
Ws(X̄) and F(X̄,t) starting fromX̄Pg asymptotically ap-
proach each other and eventually, after a long enough t
become indistinguishable.

We define the phase on the limit cycleg so that the state
XPg can be described by its phasef(X), where f:g
→S1. The phase ofXPg for the FHN equations is define
as follows:f(X)50 whenX is at the point where the mem
brane potential attains its maximum value~peak of the action
potential! alongg. We call this point the datum point. Lett
be the time necessary to reachX starting from the datum
point and moving alongg; then f(X) is defined as
t (mod N).

These two concepts, namely, the isochron and the ph
lead naturally to the definition of one-dimensional maps t
describe responses of the limit cycle oscillator to an imp
sive perturbation. Suppose that a stimulus with intensityA is
applied to the system atXPg whose phase isf(X). ThenX
is displaced by an amountA to the pointX8PWs(X9) for
someX9Pg. SinceX8 is eventually identified withX9Pg,
the phase of the system will be shifted eventually tof(X9).
The amount of phase shiftf(X)2f(X9) is called phase
delay d. The phase is delayed ifd.0 and advanced ifd
,0. Moreover, we can obtain the mapg:S1→S1 defined as

g:f~X!°f~X9! or f~X9!5g„f~X!…5f~X!2d.
~4.3!

The graph of the mapg is calledthe phase transition curve
~PTC!.

In order to calculate the delay, one should take a limt
→`. Practically, however, it is possible to approximate t
delay by replacing the limit operation in Eq.~4.2! by

uuF~X8,t !2F~X̃,t !uu,«, ~4.4!

whereX8 is a perturbed point fromXPg by the stimulus,
X̃Pg, and« is a small positive number that we determin
This means that we identifyX8 with X̃Pg within a finite
time and assume that these two points behave identical
their future.~See Fig. 6.! Let tp be the minimum time neede
for the perturbed pointX8 to satisfy the above inequalit
~4.4! for some pointX̃Pg and tn be the time elapsed forX
Pg to arrive atF(X̃,tp) alongg. SinceX8PWs(X̃) by the
assumption,d5f(X)2f(X̃). Moreover, sinceF(X8,tp)
5F(X̃,tp) and F(X,tn)5F(X̃,tp) by the assumption
d(X,A,«) can be calculated as

d~X,A,«!5tp2tn . ~4.5!

The notationd(X,A,«) accounts for the fact that the pha
shift d is a function of the state point when the stimulus
applied, the intensity of the stimulus, and the precision of
n-

e,

se,
t

l-

.

in

e

approximation. By numerical simulations, we obtain the v
ues of tp , tn , and thenf(X̃), the approximation of the
PTC, as

f~X̃!5f~X!2d~X,A,«!. ~4.6!

Let us consider the case when the second stimulus is
plied a timeT after the first one. IfT is larger thantp , then
we can consider that the state point when the second st
lus is applied is on the limit cycleg with precision better
than «. The phase of the state point just before the sec
stimulus, denoted byf8, will be

f85f~X̃!1T5f2d~X,A,«!1T ~mod N!, ~4.7!

wheref representsf(X). We call the map betweenf and
f8 the one-dimensional map~1D!; f85 f (f,T).

As observed in Sec. II, any trajectory of the excitab
FHN equations with a small spiral approaches the RT. Us
the RT, we extend the definitions of phase and 1D map
the excitable model with a small spiral. We take the traje
tory toward the equilibrium starting from the datum point
the RT @Fig. 2~a!#. The datum point is on the right-han
branch of thex nullcline and itsy value is the same as that o
the equilibrium point. We define the phase of a state point
the RT, instead of the limit cycle, as the time elapsed
arrive there from the datum point along the RT. This R
gives satisfactory results as we will show later. To obtain
delay functiond and then 1D maps approximately, we u
the same practical procedure as for the limit cycle oscilla
@24#.

When the equilibrium point is a less attractive focus, t
jectories converge to the equilibrium along the spiral, wh
winds around the equilibrium point with relatively large r
dius. Even in this case, we take one of the winding trajec
ries as the RT as shown in Fig. 2~b!. The definition of the
system’s phase along the RT needs to be adapted to the
that the winding trajectory near the equilibrium is not
attractive as either the limit cycle or the slow manifold of t
excitable FHN equations with a small spiral@25#. This means
that state points that are not on the RT do not asymptotic
approach it, but create their own spiral toward the equil
rium.

Rabinovitchet al. @18# showed that using the same de
nition of phase, one can obtaind by the following modifica-
tion: ~i! Let P1 be the state point on the RT when a sing

FIG. 6. Schematic diagram for the effect of a perturbation.~See
the text for details.! The units of the axes are arbitrary.
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pulse stimulus is applied andP18 be the perturbed point. Th
trajectory starting fromP18 creates its own spiral winding
around the equilibrium that converges to the equilibrium. L
P2 be the firsty-minimum point~i.e., bottom of the spiral!
starting from the perturbed pointP18 and P3 be the closest
y-minimum point toP2 on the RT.~ii ! The time elapsed to
reach P2 from the perturbed pointP18 provides tp in Eq.
~4.5!. ~iii ! The time elapsed to reachP3 from P1 along the
RT providestn in Eq. ~4.5!.

This procedure is an approximation with the assumpt
that P2 and P3 behave identically in their future, althoug
there always exists some distance between them. If we
cept this approximation, the procedure to obtain the de
functiond is the same as that for the oscillatory or excitab
with small spiral. This procedure makes the error relativ
small since the phase of the state point that is not on the
is evaluated on the one-dimensional curve, constituted by
bottom of the spiral RT.

In the continuous 1D maps, we assumed that after e
perturbation, the state point moved toward either the li
cycle or the RT. This assumption is valid when the system
monostable, i.e., it has a unique stable equilibrium point o
unique stable limit cycle. In the region of bistability, how
ever, there are amplitude ranges for which some points
the limit cycle are kicked into the basin of attraction of t
stable equilibrium point. For such phases, gaps appear in
corresponding 1D maps as the next phase is not defined@22#.
We have constructed 1D maps in the bistable regimes
analyzed their iterations. However, in the following, we w
not discuss in detail the influence of these gaps on the
namics of the system. This is due to the fact that they af
only small regions in the 2BDs of the system and in t
work we are more interested in the changes in the glo
organization of the 2BDs.

B. Dynamics of the one-dimensional maps

The dynamics of the periodically stimulated FHN equ
tions can be described by the phases when the stimulu
applied to the system. For any given initial phasef0 at
which the first stimulus is applied to the system, it is possi
to define the subsequent sequence$fn% inductively using the
1D map f (f,T):

fn5 f ~fn21 ,T!5 f 2~fn22 ,T!5•••5 f n~f0 ,T!.
~4.8!

The phase sequence$fn% are plotted on the one-dimension
map for an arbitrary but fixed input periodT. We call the
locus $fn% the orbit of the map. Iffm1p5fm and fm1k
Þfm for 1<k,p with k, m, andp being positive integers
$fn% is a periodic sequence of periodp. A periodic sequence
$fk%k50

p21 of periodp is stable if the following equation holds

U] f p

]f
~f0!U5 )

j 50

p21 U ] f

]f
~f j !U,1. ~4.9!

Figure 7 shows examples of the 1D map. Figures 7~d! and
7~f! are the 1D circle maps for the oscillatory model. T
maps in Figs. 7~d! and 7~f! first increase monotonically, the
decrease steeply, and then increase again gradually. F
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7~d! displays a period-2 orbit and Fig. 7~f! a chaotic re-
sponse. The locking ratio of periodically stimulated oscil
tory FHN equations defined in Sec. III can be obtained fro
the circle map using the rotation numberr @11#. To this end,
we use the mapf defined in Eq.~4.7! without taking modulo
N. Let us call this mapf̄ for the moment. LetDfn be the
phase difference betweenfn21 and f̄ (fn21 ,T); then the
rotation numberr is defined as

r5 lim
j→`

(
n51

j

Dfn

j
. ~4.10!

If $fn% is a periodic orbit of periodp with rotation number
r5q/p, then we say that the response isp:q phase locking,
whereq is a positive integer

q5 (
n51

p

Dfn . ~4.11!

For example, Fig. 7~d! shows the 2:3 phase locking respon
(r51.5). If $fn% is asymptotically aperiodic, thenr is irra-
tional. Indeed,r is an irrational number practically in Fig
7~f!.

Figures 7~a! and 7~e! are the cases for an excitable mod
with a small spiral. Since the RT of the excitable model
not a closed cycle topologically, the corresponding map
not a circle map. Indeed, the domain of definition and
range of the map are@0,̀ ) in this case. Nevertheless, th
shape of the map is similar to the oscillatory one, except
long lasting flat portion on the right-hand side of the ma
The steep negative slope portion of the map separates
monotonically increasing curve on the left from the flat po
tion on the right. It reflects the threshold behavior of t

FIG. 7. Examples of the one-dimensional map and the co
sponding orbit for the FHN equations. The parameter values
~a!–~f! correspond to the dynamics in Figs. 4~a!–4~f!, respectively.
The units of the axes are arbitrary.
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membrane model. We denote the phase of the point with
steepest negative slope asfh . If the stimulus is applied a
the phase abovefh , the membrane model fires. If not, th
model does not fire. We denote the response to the input
the symbols 1~firing! if the orbit of the map touches the fla
portion, and 0~nonfiring! otherwise. More precisely, we as
sign the symbols to the sequence$fn% as

0 for fnP@0,fh#,

1 for fn.fh . ~4.12!

For example, the sequence$fn%, except for its transient in
Fig. 7~a!, is symbolized by 100100 . . . . If $fn% is eventually
periodic with periodp except for its transient and the numb
of 1 within thep successive symbols isq, then we say that
the response isp:q phase locking. The locking ratio obtaine
from this definition practically coincides with that in Sec. II
For example, Fig. 7~a! shows the 3:1 phase locking respons
In Fig. 7~e! the response is practically chaotic.

Figures 7~b! and 7~c! are the cases for the excitable mod
with a big spiral. The 1D map in this case possesses sev
peaks. The map is almost flat between these peaks. As in
map for the excitable model with a small spiral@Fig. 7~a!#,
the map is defined forfP@0,̀ ). We symbolize the orbit of
the map in a similar way to the excitable model with a sm
spiral. We divide the map into the flat portions and the o
ers. Letdk(k51, . . . ,h) be the phase of the steepest neg
tive slope portion of the map for eachkth peak, ek(k
51, . . . ,h) the phase where the map begins to incre
steeply for eachkth peak, andh the number of peaks. We
assign the symbols to the sequence$fn% as

0 for fnP@0,d1# or P~ek ,dk# ~k51, . . . ,h!,

1 for fnP~dk ,ek11# ~k51, . . . ,h21! or fn.dh .

~4.13!

Note that Eq.~4.12! ~for a small spiral! corresponds to Eq
~4.13! ~for a big spiral! with h51. For example, Figs. 7~b!
and 7~c! show the 4:2 and 2:1 phase locking responses,
spectively. Although thez value is the same for Figs. 7~b!
and 7~c!, the number of peaks in the maps is different sin
the parameter values of the stimulus (T,A) are different. In
general, whenz increases, the number of peaks in the ma
increases. For a fixedz and (T,A), the interpeak interva
gradually decreases asf increases. Forf above some value
the peak disappears suddenly and the remaining portio
almost flat with small oscillations. As thez value becomes
close to the double cycle bifurcation point, the number of
peaks becomes larger~tend to infinity! and eventually the 1D
map may coincide with the circle map for the oscillato
model.

We can conclude that the shape of the 1D map chan
continuously along the transition. To better understand
continuity, we propose a simple model that mimics the to
logical behavior of the maps for the excitable-oscillato
FHN equations in the next section.
e

by

.

l
ral
the

ll
-
-

e

e-

e

s

is

e

es
is
-

V. SIMPLE MODEL

In the preceding section we observed that the bifurcat
structure of the periodically stimulated FHN equatio
changes continuously along the transition. In this section
introduce a simple model to understand clearly how
shape of the 1D map changes continuously along the tra
tion and how it affects the bifurcation structure of the ma

First, we construct a simple model that reflects essen
dynamics of the forced FHN equations. The model is n
described by differential equations. We just assimilate
system’s state on the RT of the FHN equations. We simp
the RT of the FHN equations in thex-y phase plane as
shown in Fig. 8. It mimics the spiral-shaped RT of the FH
equations and starts from the datum pointD, which corre-
sponds to the peak of an action potential of the FHN eq
tions. The terminal point corresponds to the equilibrium
the FHN equations. We parametrize the RT by one para
eter r and assume that the converging rate of the wind
trajectory to the terminal depends on the parameterr. The
parameterr corresponds to the parameterz in the FHN equa-
tions. Whenr 50 or r 51, the RT does not show a spiral. W
associate the former with the excitable FHN equations w
out a spiral and the latter with the oscillatory limit cycle.

The state point on the simplified RT moves as follows

D→R1→L1→O 1st round,

O→R2→L2→O 2nd round ,

A A

O→Rm→Lm→O mth round,

A A

The point O is set to the origin and the datum pointD
5(1,0). Let Lm5(am ,bm) and Rm5(cm ,bm)(m
51,2,3, . . . ) be thecoordinates of the points depicted in Fi

FIG. 8. ~a! RT of the simple membrane model in thex-y plane
in the case for 0<r ,1. ~b! RT of the simple membrane model i
the x-y plane in the case forr 51, which corresponds to the limi
cycle of the FHN equations. The units of the parameterr and the
axes are arbitrary.
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8. We setR15(1/2,A3/2) and L15(21/2,A3/2) and the
subsequent points are defined as

am52
1

2
r m21, bm5

A3

2
r m21, cm5

1

2
r m21

~m51,2,3, . . . !. ~5.1!

If 0<r ,1, then Rm and Lm converge to the origin. Ifr
51, we assume that the RT changes its shape abruptly to
closed orbit corresponding to the limit cycle defined asD
→R1→L1→O→D. See Fig. 8~b!.

The following are the assumptions for the model.
~a! The moving velocity of the state point along the lin

DR1 is a function of they-coordinate value of the state poin
as

ẏ5~y2b12h!/l ~l521.5, h50.01!. ~5.2!

The velocity decreases linearly asy approachesR1 .
~b! The state point jumps fromRm to Lm instantaneously

for eachmth round (m51,2, . . . ) ~from R1 to L1 and from
O to D in the caser 51).

~c! The moving velocity of the state point along the lin
L1O is a function of they-coordinate value of the state poin
as

ẏ5~y1h!/l. ~5.3!

It decreases linearly asy approaches the origin. OnORm in
the mth round along the lineOR1 , the velocity increases
linearly with the same rate as in Eq.~5.3! for L1O. When
r 50, the state point reaches the pointO within a finite time
from D. We assume that the state point remains at the p
O.

~d! The state point is displaced horizontally by an amo
A.0 if it is perturbed by a stimulus. The perturbed po
returns to the RT horizontally and instantaneously. If t
perturbed point from theL1O branch is aboveOR1 ~corre-
sponding to the threshold!, it jumps to the right-hand branc
of the RT horizontally and instantaneously~an action poten-
tial generation!. If the perturbed point is below the thresho
and it is between themth and the (m11)th rounds of the
RT, then it instantaneously returns to the RT in themth
round.

From these assumptions we can obtain several quan
needed to construct the 1D map. The necessary timet1→2

D

from (x1 ,y1) to (x2 ,y2), when these two points are on th
line DR1 , is obtained from assumption~a! as

t1→2
D 5l lnS b11h2y2

b11h2y1
D ~0<y1<y2<b1!. ~5.4!

The necessary timet1→2
L from (x1 ,y1) to (x2 ,y2), when

these two points are on the lineL1O and in the samemth
round, is obtained from assumption~c! as

t1→2
L 5l lnS y21h

y11h D ~0<y2<y1<bm!. ~5.5!
he
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The necessary timet1→2
R from (x1 ,y1) to (x2 ,y2), when

these two points are on the lineOR1 and in the samemth
round, is obtained from assumption~c! as

t1→2
R 5l lnS y11h

y21h D ~0<y1<y2<bm!. ~5.6!

The necessary time to reach the end of themth round from
the datum pointD in the case 0<r ,1, denoted byt(m), is
obtained from assumptions~a!–~c! as

t~m!52l(
i 51

m

lnS h

bi1h D . ~5.7!

The natural periodN of the oscillation in the caser 51 is

N52l lnS h

b11h D . ~5.8!

We define the phase of the state point on the RT as
time elapsed from the datum pointD along the RT in the
same way as for the FHN equations. Whenr 51 we take
modulo N. For instance, the phase of the pointLk
5(ak ,bk) in themth round, denoted byp(m,k), is obtained
using Eqs.~5.5!–~5.7! as

p~m,k!5t~m21!1l lnS h~bk1h!

~bm1h!2D . ~5.9!

There exists a critical pointC5(xc ,yc) on the lineL1O
that separates firing from nonfiring when a stimulus w
intensityA is applied. Since the horizontal distance betwe
C and the lineOR1 is equal to A, C5(2A/2,A3A/2).
When the pointC is betweenLme

andLme11 for some posi-

tive integerme , the trajectory starting from the datum poin
D passes throughC for each round until themeth round. The
phase ofC depends on the round number of the trajecto
For 0<r ,1, the phase of the pointC in the mth round,
denoted byu(m) for m<me , is

u~m!5t~m21!1l lnS h~A3A12h!

2~bm1h!2 D . ~5.10!

Thus the stimulus with intensityA may or may not induce a
firing depending on its phase when the system’s phase is
thanu(me). If the phase is aboveu(me), then the stimulus
always induces firing. Whenr 51, the phase of the pointC,
denoted byu, is uniquely determined as

u5l lnS h~A3A12h!

2~b11h!2 D . ~5.11!

The 1D mapf (f,T) is defined in the same way as th
FHN equations~4.7! and~4.8!. In this case, we can calculat
the equation of the mapf (f,T) analytically. Let fn and
fn11 be the phase of the system when thenth and the (n
11)th stimuli are applied, respectively. Thenf (f,T) in the
case for 0<r ,1 is
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fn115fn1T for 0<fn<u~1!, 0<fn,p~1,1!, ~5.12!

fn115fn1t~k21!12l lnS b11h

bk1h D1T for 0<fn<u~1!, p~1,k!<fn,p~1,k11! ~k51,2,3, . . . !, ~5.13!

fn115l lnS 2~b11h!2exp~fn /l!1h~b112h!

h~b11h! D1T for u~1!,fn,t~1!, ~5.14!

fn115l lnS 2hexp@2$fn2t~m21!%/l#1b112h

b11h D1T for t~m21!<fn,p~m,m! ~m52,3,4, . . . !, ~5.15!

fn115fn1t~k21!2t~m21!12l lnS bm1h

bk1h D1T for p~m,m!<fn<u~m!,

p~m,k!<fn,p~m,k11! ~m52, . . . ,me ; k5m,m11, . . . !, ~5.16!

fn115l lnS 2~bm1h!2exp@$fn2t~m21!%/l#1h~b112h!

h~b11h! D1T for u~m!,fn,t~m! ~m52,3, . . .!. ~5.17!

The mapf (f,T) in the case forr 51 is

fn115fn1T~mod N! for 0<fn<u, ~5.18!

fn115l lnS 2~b11h!2exp~fn /l!1h~b112h!

h~b11h! D1T ~mod N! for u,fn,N. ~5.19!
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Figure 9 exemplifies the 1D maps of the simple mod
The simple model behaves as an excitable membrane m
with a small spiral in Figs. 9~a! and 9~e! (r 50.0001), an
excitable membrane with a big spiral in Figs. 9~b! and 9~c!
(r 50.5), and as an oscillatory membrane in Figs. 9~d! and
9~f! (r 51). As in Fig. 7 for the FHN equations, the shape
the maps in Figs. 9~a! and 9~d! are similar to each other
although the latter is a circle map and the former is not.

Consider the case 0<r ,1 when the simple model be
haves as an excitable membrane. Using Fig. 9~b! as an ex-
ample, let us illustrate the shape of the map and how
formulation of the map@Eqs. ~5.12!–~5.17!# is obtained.
SinceA50.06 in Fig. 9~b!, the pointC is located betweenL5
andL6 . As defined above,me denotes the final round num
ber until which the RT passes throughC. me can be obtained
as the maximum value ofm that satisfiesyc,bm . Hence the
value of me in this case is 5. We start the illustration fro
smaller phases for the first round (m51) on the RT where a
stimulus is applied. In the following, we use ‘‘the stimulu
phasefs’’ and ‘‘the perturbed phasefp’’ to denote the
phase where the stimulus is applied and the phase of the
on the RT to which the perturbed point returns just after
stimulation, respectively. If thenth stimulus phase isfs , the
(n11)th stimulus phase will befp1T whereT is the inter-
stimulus interval.

The formulation of the map for the stimulus phase le
thant(1) ~i.e., until the end of the first round! is as follows.

~i! As shown in Fig. 9~b!, f (f,T) is a straight line with
slope 1 for earlyf in @0,p(1,1)) as explained in the follow
ing. Until the stimulus phase reachesp(1,1) ~i.e., the state
point is located betweenD andR1), the state point is always
above the threshold line, and the perturbed point returns
l.
del

f

e

ate
e

s

n-

FIG. 9. Examples of the one-dimensional map and the co
sponding orbit for the simple model.~a! r 50.0001~excitable with a
small spiral!, A50.3, andT53.5, 3:1 phase locking response;~b!
r 50.5 ~excitable with a big spiral!, A50.06, andT521.1, 4:2
phase locking response;~c! r 50.5 ~excitable with a big spiral!, A
50.03, andT522.0, 2:1 phase locking response;~d! r 51.0 ~oscil-
latory with a stable limit cycle!, A50.3, andT518.0, 2:3 phase
locking response;~e! r 50.0001~excitable with a small spiral!, A
50.7,T51.5, chaotic response; and~f! r 51.0 ~oscillatory with a
stable limit cycle!, A50.7, andT515.0, chaotic response. Th
units of all parameters and axes are arbitrary.
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stantaneously to the same point as before the perturba
Thusfp5fs , leading to Eq.~5.12!.

~ii ! f (f,T) is a straight line with slope 1 forf
P„p(1,1),p(1,2)… and then it increases discontinuously
p(1,2) followed by the straight line with slope 1 forf
P„p(1,2),p(1,3)…. f (f,T) increases discontinuously again
p(1,k)(k53, . . . ,me) and each discontinuity is followed b
the straight line with slope 1 forfP„p(1,k),p(1,k11)…(k
53, . . . ,me21) and forfP„p(1,me),u(1)…. This process
with severalk generates the first peak atf5u(1). This is
explained as follows. The stimulus phase betweenp(1,k)
andp(1,k11)(k51, . . . ,me), as long as it is less thanu(1)
~i.e., the state point betweenL1 andL2 , L2 andL3 , L3 and
L4 , L4 and L5 , and L5 and C in the first round in this
example!, does not lead to a firing and the perturbed po
returns to the same point as before the perturbation on
line L1O in thekth round by assumption~d!. As the stimulus
phasefs is close tou(1), theperturbed point returns to th
line L1O with higher value ofk ~further inside the spiral!,
leading to a higher value of the phasefp after the stimulus.
Since the round number of the returned point is constant
fP„p(1,k),p(1,k11)… (k51, . . . ,me21) for eachk and
for fP„p(1,me),u(1)…, f (f,T) is a straight line with slope 1
in each interval as in~i!. Thus we obtain Eq.~5.13!. Let
Lk(2) and Lk(1) be the points infinitesimally above an
below Lk on the RT, respectively. The perturbed point fro
Lk(2) returned in the (k21)th round. Thus the perturbe
phase isp(k21,k)(k52, . . . ,me). The perturbed point from
Lk(1) returned in thekth round. Thus the perturbed phase
p(k,k)(k52, . . . ,me). Therefore, f (f,T) jumps upward
discontinuously at eachp(1,k)(k52, . . . ,me) by

p~k,k!2p~k21,k!52l lnS h

bk1h D . ~5.20!

~iii ! f (f,T) jumps downward discontinuously atu(1)
~right after the first peak! and then it decreases further, fo
lowed by the almost flat portion forfP„u(1),t(1)…. The
stimulus phase greater thanu(1) and less thant(1) ~i.e., the
state point betweenC andO in the first round! always leads
to a firing and the perturbed state point is transferred to
line DR1 horizontally by assumption~d!. Since the perturbed
phase changes suddenly atu(1) and the phase of the sta
point on the lineDR1 is small, fp or f (f,T) decreases
discontinuously atu(1). Thephasefs of the state point with
its y coordinate on the lineL1O in the first round is ex-
pressed as

fs5l lnS h~y1h!

~b11h!2D . ~5.21!

Since they coordinates of the point when the stimulus
applied and when the perturbed point returns just after
stimulation are the same by assumption~d!, the phasefp on
the lineDR1 is, by assumption~a!,

fp5l lnS 2y1b11h

b11h D . ~5.22!

By eliminatingy from Eqs.~5.21! and ~5.22!, we obtain the
relationship betweenfs andfp and then we have Eq.~5.14!.
n.
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Since the state point moves slowly near the pointO, fs
P„u(1),t(1)… spans a relatively wide interval. On the oth
hand, since the state point moves relatively fast near
point D, fp in this range changes little asfs changes. Thus
the map in this range is almost flat.~See@15# for a similar
argument.!

The formulation of the map in the second and high
rounds is as follows.

~iv! f (f,T) is still in the almost flat portion with the
relatively small value forfP„t(1),p(2,2)…. The stimulus
phase greater thant(1) and less thanp(2,2) ~i.e., the state
point betweenO andR2 in the second round! always leads to
a firing and the perturbed state point is transferred to the
DR1 horizontally. In a similar way as in~iii !, the relationship
between the phasefs of the state point with itsy coordinate
on the lineOR1 in the second round is

fs5t~1!2l lnS y1h

h D ~5.23!

and fp is as in Eq.~5.22!. Thus we obtain the relationshi
betweenfs andfp for this range in the second round as
Eq. ~5.15! with m52. As in ~iii !, „t(1),p(2,2)… spans a rela-
tively wide interval andf (f,T) takes a small value and
forms almost flat portion againstf.

~v! f (f,T) jumps upward discontinuously atp(2,2) fol-
lowed by the straight line with slope 1 forf
P„p(2,2),p(2,3)…. f (f,T) increases discontinuously again
p(2,k)(k53, . . . ,me) and each discontinuity is followed b
the straight line with slope 1 forfP„p(2,k),p(2,k
11)… (k53, . . . ,me21) and fP„p(2,me),u(2)…. This
process with severalk generates the second peak atf
5u(2). In asimilar way to~ii ! in the first round, we obtain
Eq. ~5.16! with m52. Each discontinuity atp(2,k)(k
53, . . . ,me) is also given by Eq.~5.20!.

~vi! f (f,T) jumps downward discontinuously atu(2)
~right after the second peak! and then decreases followed b
the almost flat portion forfP„u(2),t(2)…. In a similar way
to ~iii ! in the first round, we obtain Eq.~5.17! with m52.

~vii ! From the third round until themeth round (me55 in
this example!, similar formulations in~iv!–~vi! repeat in this
order for eachfP@t(m21),t(m))(m53, . . . ,me).

~viii ! f (f,T) changes its shape forf>t(me). Since the
stimulus phasefs is always aboveu(me) ~i.e., they coordi-
nate of the state point is always below that ofC), the stimu-
lus always induces a firing. Although it is not easy to s
from the Fig. 9~b!, the map still has a repetitive structur
From the (me11)th round, similar formulations in~iv! and
~vi!, i.e., Eqs.~5.15! and~5.17!, repeat in this order for each
fP@t(m21),t(m))(m5me11,me12, . . . ).

In this way, the straight lines with slope 1 with sever
discontinuities and the almost flat portion alternate forf
P@0,t(me)) in the 1D map andf (f,T) becomes almost fla
with a small-amplitude oscillation forfP@t(me),`). The
number of peaks coincides with the value ofme and in-
creases as the value ofr increases or the intensityA de-
creases.me51,t(me)58.7, and the map has only one pe
in Fig. 9~a! (r 50.0001 andA50.3);me55,t(me)542.4,
and the map has five peaks in Fig. 9~b! (r 50.5 and A
50.06); andme56,t(me)546.3, and the map has six pea
in Fig. 9~c! (r 50.5 andA50.03). The shape of the map
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determined only by the parametersr and A. The periodT
shifts the map upward or downward without affecting
shape@see Eqs.~5.12!–~5.17! or Eqs.~5.18! and ~5.19!#.

As the value ofr approaches 1, the 1D map eventua
gains periodic structure. The discontinuous increasep(k,k)
2p(k21,k) in each peak of the map at eachp(m,k)(m
<me) was given in Eq.~5.20! and the natural period of th
oscillation in the caser 51 was given in Eq.~5.8!. Since
bk→b1 as r→1,

p~k,k!2p~k21,k!→N ~5.24!

and the interpeak interval of the map

u~m11!2u~m!52l lnS h

bm111h D→N, ~5.25!

wherem,me asr→1. Hence, by taking moduloN for both
the domain of definition and the range of the map, the m
becomes a circle map. This indicates that the map chan
continuously when the model dynamics changes from ex
ability to oscillation. However, strictly speaking, this obse
vation does not hold rigorously since we assume that
shape of the RT changes abruptly atr 51. The map forf
smaller thant(1) exactly coincides with the map for osci
latory membrane (r 51) in Eqs. ~5.18! and ~5.19!, but the
map for f.t(1) differs slightly from that forf,t(1).
Note that the map forr 51 has complete periodicity with
period N in both the domain and the range of the map
f>t(1). Since the shape of the RT changes continuousl
the bifurcation point between excitable and oscillation in
FHN equations, we can speculate strongly that the 1D m
changes continuously at the bifurcation point.

Comparing the 1D map of the FHN equations~Fig. 7!
with that of the simple model~Fig. 9!, we can see a similar
ity. Hence the illustration for continuous change of t
simple map shape can be applicable for the FHN equati

As in Eqs.~4.10!, ~4.12!, and ~4.13! for the FHN equa-
tions, we symbolize the map’s dynamics by 1~firing! if the
orbit of the map touches the flat portion and 0~nonfiring!
otherwise. More precisely, we assign the symbols to the
quence$fn% as follows: Forr 50,

0 for fnP@0,u~1!#,

1 for fn.u~1! ~5.26!

and for 0,r ,1,

0 for fnP@0,u~1!# or fnP~p~m,m!,u~m!#

~m51, . . . ,me!,

1 for fnP~u~m!,p~m11,m11!#
p
es
t-

e

r
at
e
p

s.

e-

~m51, . . . ,me21! or fn.u~me!. ~5.27!

For r 51, we calculate the rotation numberr by Eq. ~4.10!.
For instance, Figs. 9~a!, 9~b!, 9~c!, and 9~d! show the 3:1,
4:2, 2:1, and 2:3 phase locking responses, respectively,
Figs. 9~e! and 9~f! show the chaotic responses.

We show how the continuous change of the 1D map
lates to the continuous change in the global organization
the bifurcation structure. Figure 10 shows the 2BDs of
simple model for several values ofr. The value of the pa-
rameterr increases from top@Fig. 10~a!# to bottom @Fig.
10~d!#.

Figure 10~a! is the case forr extremely small. In this case
the simple model behaves as an excitable membrane w
small spiral and the corresponding 1D map is like Fig. 9~a!.
The global structure of Fig. 10~a! is similar to that of Fig.
5~a!. It shows wide 1:1 phase locking region for largeT since
the maps shifted upward largely have a unique stable fi
point on the almost flat portion. AsT decreases, a perio
adding cascade generatingp:1 phase lockings takes place
See@14# for more details. There is no 0 response region
this simple model because the distance between pointO and
the threshold line is 0.

Figures 10~b! and 10~c! are the cases forr relatively large
when the simple model behaves as an excitable memb
with a big spiral. In this case, the corresponding 1D maps
like Figs. 9~b! and 9~c!. The global structure of Figs. 10~b!
and 10~c! is similar to that of Figs. 5~b! and 5~c!, respec-
tively.

In these diagrams, phase locking regions with higher
riods ~mountains and valleys! can be observed in the 1:

FIG. 10. Two-parameter bifurcation diagrams of the simp
model stimulated by periodic pulse trains with several values of
parameterr. The ordinate is the pulse intensityA and the abscissa is
the periodT. See the caption of Fig. 5 for the illustration of th
diagram. The values of the parameterr are~a! r 50.0001~excitable
with a small spiral!, ~b! r 50.25 ~excitable with a relatively big
spiral!, ~c! r 50.5 ~excitable with a big spiral!, ~d! r 51.0 ~oscilla-
tory with a limit cycle!. The units ofr and the axes are arbitrary.
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phase locking region. As in the FHN equations, for a fixer
@Figs. 10~b! and 10~c!#, the peak height of the mountain
becomes lower and the intervalley intervals become sho
as the stimulus periodT increases. Moreover asr increases,
the height of the mountains becomes higher from Fig. 10~b!
to 10~c!, and the intervalley intervals become larger. Th
change can be understood from the dynamics of the 1D m
of the simple model. Let us assume a 1D map that posse
me peaks for some fixedr and A. Then the map hasme
almost flat portions between the peaks. The lastmeth almost
flat portion spans@u(me),`). Assume that the first almos
flat portion of the map intersects with the diagonal for so
small T. The intersection point is a stable fixed point of t
map and provides 1:1 phase locking region in the 2BD.
increasingT the map just shifts upward and the intersecti
point moves rightward. When the intersection point reac
p(2,2), the intersection point disappears and the 1:1 ph
locking is terminated. Further increasingT, the second al-
most flat portion intersects with the diagonal and 1:1 ph
locking appears again. This process alternates asT increases
until T5u(me) and forT.u(me) the 1:1 phase locking re
gion persists. Sinceme , the number of peaks in the ma
decreases asA increases, the range ofT with this alternate
structure~i.e., the appearance and disappearance of the
region! for a fixedA value becomes smaller asA increases.
For the same reason, the height of the mountains in the 2
becomes lower asT increases. Similarly, sinceme increase
asr increases, the height of the mountains becomes highe
r increases.

Since the 1D map gains periodicity in the direction
both the domain of definition and the range of the map w
periodN as r becomes close to 1, the mountains appear
riodically with periodN in the direction ofT and intervalley
intervals become close to the natural period of the oscilla
N. Eventually, the bifurcation structure gains periodicity f
the oscillatory model@r 51, Fig. 10~d!#.

VI. DISCUSSION

We used FitzHugh-Nagumo equations as a model of n
ronal excitations. The model exhibits both an excitation
response to an impulsive current stimulation and a spont
ous oscillation depending on the parameter valuez, which
reflects the intensity of the constant dc applied to the mo
The critical points that separate the excitable from the os
latory membrane models are the double cycle and the H
bifurcations in the model.

In this study we explored the model’s dynamics when
membrane model is stimulated periodically by impulsi
trains with various periodsT and intensitiesA. As in many
other nonlinear systems, the forced model showedp:q phase
lockings as well as chaotic dynamics depending on the
rameter values (T,A). The dynamics of the model was sum
marized in the 2BD in (T,A) parameter plane. In particula
we showed that the global organization of the 2BD chan
depending on the model’s intrinsic parameterz. Despite the
drastic change in the system’s asymptotic dynamics at
double cycle bifurcation point, the changes in the diagr
are a continuous function of the parameter valuez.

To see these changes, we defined the appropriate 1D m
f to describe the dynamics of both the oscillatory and
er
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excitable membrane models stimulated by periodic pu
trains. This was done by extending the concept of phasf
and isochron utilized for oscillatory systems to excitable s
tems. A similar method was used in@18#. Different 1D maps
approximating Poincare´ maps of the periodically stimulate
FHN equations have been proposed. LetXPR2 be the state
point of the FHN equations. All trajectories in the FH
phase plane approach the one-dimensional curve referre
as the reference trajectory. For the oscillatory FHN eq
tions, the RT coincides with the limit cycle. Using the RT,
key point to constructing a 1D map is finding an appropri
one-to-one mappingf that maps eachX on the RT to a
uniquely determined scalar variable. Different mappingf
leads to a different 1D map. Letfx andfy be such mappings
andX5fx(X) and Y5fy(X) be the corresponding scala
variables, respectively. A 1D map is obtained by plotti
f(Xi 11) againstf(Xi), where Xi represents the system’
state when thei th stimulus is applied. IfY is a strictly in-
creasing function ofX, then there is a one-to-one relation
ship between the two@i.e., Y5u(X) or, equivalently,X
5u21(Y)]. Accordingly, this relationship suggests that co
responding 1D mapf Y is conjugate tofX in the sense that

fY5u+ fX+u21. ~6.1!

Thus, onceu is determined, a simple geometrical constru
tion allows us to transformfX to fY and vice versa. Using
Eq. ~6.1!, we discuss the relation betweenf ~the 1D map used
in this paper! and some other maps. Nomuraet al. @15# con-
stituted a 1D map for the oscillatory FHN equations using
geometrical angleu to describe the system’s stateX on the
limit cycle. They measured the angle between the line c
necting the unstable equilibrium of the FHN equations to
certain datum point on the limit cycle and the line connect
the former to the pointX on the limit cycle. Since the angle
u increases as the time phasef increases,u is a strictly
increasing function off. Thus their 1D map is conjugate t
f. However, their 1D map cannot be extended to the excita
FHN equations with a big spiral since the state point on
spiral-shaped RT cannot be expressed uniquely by the
metrical angleu, whereas our mapf can be extended. Do
and Sato@14# constituted a 1D map for the excitable FH
equations with a small spiral using the membrane poten
of the model. This is possible since the membrane poten
increases monotonically toward the resting potential from
most hyperpolarized state after every firing~see Fig. 2! and
thus, within this range, the state point on the RT and
membrane potential have a one-to-one correspondence. T
1D map is also conjugate to ours. Since the one-to-one
respondence between the membrane potential and the
point is limited within the range mentioned above, it cann
be extended to the oscillatory or the excitable FHN equati
with a big spiral. Kaplanet al. @21# computed the areaAi
under the deflection induced by thei th stimulus and showed
that plots of the return maps representingAi versusAi 11
revealed the characteristics of the response of the memb
to periodic stimulation. In order to compare their meth
with the one used in this paper, we computed the deflec
A induced by a pulse arriving at a phasef and observed
that, except for short phases corresponding to the action
tential,A is a strictly increasing function off that reveals
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that their return maps can be derived from ours and v
versa using Eq.~6.1! for the limited phase. Kaplanet al. @21#
were interested in the skipping patterns in the response o
excitable cell to a subthreshold periodic stimulation. The
fore, they limited their investigation to small amplitudes a
short periods, as skipping was mainly observed in this
rameter range. In contrast, we were interested in the resp
in a wider parameter range, which explains that we obtai
1D maps with a wider variety of shapes~see Fig. 7! than the
ones they observed.

In comparison with these three methods exemplifi
above, the state point on the RT for both the excitable F
equations with a spiral and the oscillatory FHN equatio
can be expressed uniquely by the time phase that we use
f in this paper. This advantage allows us to investigate
continuous changes in the 2BD by the continuous change
the shape of the 1D maps. Along the transition from ex
able to oscillatory regimes of the model, the 1D map chan
continuously from the multimodal maps to the circle ma
We confirmed this observation analytically by using simp
1D maps that mimic the maps for the forced FHN model

The continuous changes in 2BDs result from the fact th
despite the discontinuous change that takes place in the
bal attractor of the unforced system at the double cycle
furcation, the underlying vector field that governs the d
namics changes continuously withz. This fact can be seen in
Fig. 1, which shows that the number of transient spikes g
erated by the excitable membrane model increases as
stimulus intensity increases toward the double cycle bifur
tion point. Let us provide a formal basis for the relatio
between the continuity of the flow and that of the Arno
tongues. We denote byF(X,t;z) the flow associated with
Eq. ~2.1!; then F(X,t;z) is a continuous function of all its
arguments. The dynamics of the periodically forced syst
can be described by the iterations of the two-dimensio
map F(X,A,T,z)5`A+F(X,T;z), where`A is the transla-
tion of the vector (A,0) @20#. Locking responses correspon
to the periodic orbits of the mapF. Thus the boundaries o
Arnold tongues in the (T,A) parameter plane correspond
singularities of the mapF. Typically, these boundaries ar
saddle-node bifurcations, that is, pointsX* such that
Fp(X* ,A* ,T* ,z)5X* and det(DFX*

p
2I )50. Since these

conditions are persistent under small perturbations of
mapF and this map depends continuously on the param
z, we ‘‘expect’’ that if such a bifurcation takes place at th
parametersA0* and T0* for somez0 , a similar bifurcation
takes place for someA* andT* nearA0* andT0* for z near
z0 . The above explanation provides further theoretical s
port for the continuous changes observed in the 2BDsz
was varied. A detailed analysis of the bifurcation of the m
F will be performed in the future to complement the abo
statement.

A further observation of the continuous changes in
2BD is that the location of the chaotic regions in the 2B
may change continuously along the transition, although
tailed investigations are needed to clarify this. Let us ma
this statement clear.

To this end, first we summarize the dynamics of circ
maps. Circle maps can be divided into two classes accor
to their topological properties. One is a monotonically
e
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creasing map and the other is a nonmonotonic one.
former case is relatively well analyzed@11# and the maps
show only periodic and quasiperiodic dynamics. Stable fix
points or periodic orbits with different periods cannot coex
in the map. In the latter case, the nonmonotonic circle m
can exhibit complex dynamics including multistability an
chaos as well as periodic dynamics. In cases of forced li
cycle oscillators, in general, the monotonically increas
maps are obtained for weak stimulations~lower intensities!
and the nonmonotonic ones for higher intensities. The form
is referred to as a type 1 map and the latter as type 0@3,26#.
This means that complex dynamics regions, including c
otic regions, in the 2BD will be observed for a relative
high stimulus intensity region, especially near the bound
intensity separating one type from the other. This was c
firmed in our simulations, although several complex dyna
ics were observed even for small intensity regions~this is
because the forced dynamics of the model cannot be
scribed completely by 1D maps, i.e., limitation of the on
dimensional approximation of the Poincare´ maps!.

Second, we summarize the bifurcation structure of pe
odically forced excitable membranes and compare it to t
of the circle maps using Fig. 5. Figure 5~a! is a typical 2BD
of forced excitable membranes. In these diagrams, the do
nant regions are 1:1, 2:1, and 3:1 phase locking regions
the subdominant regions with (p1p8):(q1q8) were ob-
served between adjacent dominant regions withp:q and
p8:q8. Between these subdominant regions, several cha
regions were observed. In contrast to the circle map ca
these complex dynamics regions were observed even in
relatively low stimulus intensity regions, for example, alo
the boundary that separates the 0 response region from
other regions. In our simulations, various kinds of dynam
including chaotic ones were unfolded from this bounda
when the parameterz increased toward the double cycle b
furcation point. This suggests that the chaotic regions
served for lowerz along the boundary may increase asz
increases and connect with the chaotic regions in the hig
intensity regions generated by the type 0 circle maps.

Although we did not report them in this paper, we al
analyzed continuous changes of Arnold tongues in the (T,A)
parameter plane for a piecewise linear version of the F
equations, in particular at the singular limitc→` @27#. In
this case, the transition from an excitable to an oscillat
membrane when the intrinsic parameterz value is varied is
neither a Hopf nor a double cycle bifurcation, but at t
onset of the appearance of the limit cycle oscillation, t
period of the oscillation is infinity. Therefore, asz decreases
from the oscillatory regime toward the transition point, t
periodic structure of the 2BD is stretched in the periodT
direction and eventually the diagram with period infinity c
incides with that for the excitable medium.

Finally, we conclude the paper with the following stat
ment: When an appropriate control parameter of the neuro
membrane model changes its value, the model’s beha
changes from quiescent to sustained oscillation. One can
terpret this as the model’s dynamics representing the in
sity of the control parameter in an all-or-none fashion. Th
is, for the parameter range within the quiescent state,
spike~i.e., no information about the control parameter valu!
is transmitted by the membrane. If the state of the mode
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perturbed, by periodic excitatory inputs in our case,
model generates spike sequences with various temp
structures that reflect the control parameter value. That is
temporal structures change as the control parameter v
changes and they can be interpreted as a representation
control parameter value.
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